Concept

Great inverted snub icosidodecahedron

In geometry, the great inverted snub icosidodecahedron (or great vertisnub icosidodecahedron) is a uniform star polyhedron, indexed as U69. It is given a Schläfli symbol sr{,3}, and Coxeter-Dynkin diagram . In the book Polyhedron Models by Magnus Wenninger, the polyhedron is misnamed great snub icosidodecahedron, and vice versa. Cartesian coordinates for the vertices of a great inverted snub icosidodecahedron are all the even permutations of (±2α, ±2, ±2β), (±(α−βτ−1/τ), ±(α/τ+β−τ), ±(−ατ−β/τ−1)), (±(ατ−β/τ+1), ±(−α−βτ+1/τ), ±(−α/τ+β+τ)), (±(ατ−β/τ−1), ±(α+βτ+1/τ), ±(−α/τ+β−τ)) and (±(α−βτ+1/τ), ±(−α/τ−β−τ), ±(−ατ−β/τ+1)), with an even number of plus signs, where α = ξ−1/ξ and β = −ξ/τ+1/τ2−1/(ξτ), where τ = (1+)/2 is the golden mean and ξ is the greater positive real solution to ξ3−2ξ=−1/τ, or approximately 1.2224727. Taking the odd permutations of the above coordinates with an odd number of plus signs gives another form, the enantiomorph of the other one. The circumradius for unit edge length is where is the appropriate root of . The four positive real roots of the sextic in are the circumradii of the snub dodecahedron (U29), great snub icosidodecahedron (U57), great inverted snub icosidodecahedron (U69), and great retrosnub icosidodecahedron (U74). The great inverted pentagonal hexecontahedron (or petaloidal trisicosahedron) is a nonconvex isohedral polyhedron. It is composed of 60 concave pentagonal faces, 150 edges and 92 vertices. It is the dual of the uniform great inverted snub icosidodecahedron. Denote the golden ratio by . Let be the smallest positive zero of the polynomial . Then each pentagonal face has four equal angles of and one angle of . Each face has three long and two short edges. The ratio between the lengths of the long and the short edges is given by The dihedral angle equals . Part of each face lies inside the solid, hence is invisible in solid models. The other two zeroes of the polynomial play a similar role in the description of the great pentagonal hexecontahedron and the great pentagrammic hexecontahedron.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.