In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines, or reduction systems). In their most basic form, they consist of a set of objects, plus relations on how to transform those objects.
Rewriting can be non-deterministic. One rule to rewrite a term could be applied in many different ways to that term, or more than one rule could be applicable. Rewriting systems then do not provide an algorithm for changing one term to another, but a set of possible rule applications. When combined with an appropriate algorithm, however, rewrite systems can be viewed as computer programs, and several theorem provers and declarative programming languages are based on term rewriting.
In logic, the procedure for obtaining the conjunctive normal form (CNF) of a formula can be implemented as a rewriting system. The rules of an example of such a system would be:
(double negation elimination)
(De Morgan's laws)
(distributivity)
where the symbol () indicates that an expression matching the left hand side of the rule can be rewritten to one formed by the right hand side, and the symbols each denote a subexpression. In such a system, each rule is chosen so that the left side is equivalent to the right side, and consequently when the left side matches a subexpression, performing a rewrite of that subexpression from left to right maintains logical consistency and value of the entire expression.
Term rewriting systems can be employed to compute arithmetic operations on natural numbers.
To this end, each such number has to be encoded as a term.
The simplest encoding is the one used in the Peano axioms, based on the constant 0 (zero) and the successor function S. For example, the numbers 0, 1, 2, and 3 are represented by the terms 0, S(0), S(S(0)), and S(S(S(0))), respectively.
The following term rewriting system can then be used to compute sum and product of given natural numbers.