Concept

Reversible process (thermodynamics)

Summary
In thermodynamics, a reversible process is a process, involving a system and its surroundings, whose direction can be reversed by infinitesimal changes in some properties of the surroundings, such as pressure or temperature. Throughout an entire reversible process, the system is in thermodynamic equilibrium, both physical and chemical, and nearly in pressure and temperature equilibrium with its surroundings. This prevents unbalanced forces and acceleration of moving system boundaries, which in turn avoids friction and other dissipation. To maintain equilibrium, reversible processes are extremely slow (quasistatic). The process must occur slowly enough that after some small change in a thermodynamic parameter, the physical processes in the system have enough time for the other parameters to self-adjust to match the new, changed parameter value. For example, if a container of water has sat in a room long enough to match the steady temperature of the surrounding air, for a small change in the air temperature to be reversible, the whole system of air, water, and container must wait long enough for the container and air to settle into a new, matching temperature before the next small change can occur. While processes in isolated systems are never reversible, cyclical processes can be reversible or irreversible. Reversible processes are hypothetical or idealized but central to the second law of thermodynamics. Melting or freezing of ice in water is an example of a realistic process that is nearly reversible. Additionally, the system must be in (quasistatic) equilibrium with the surroundings at all time, and there must be no dissipative effects, such as friction, for a process to be considered reversible. Reversible processes are useful in thermodynamics because they are so idealized that the equations for heat and expansion/compression work are simple. This enables the analysis of model processes, which usually define the maximum efficiency attainable in corresponding real processes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.