In geometry of 4 dimensions, a 3-4 duoprism, the second smallest p-q duoprism, is a 4-polytope resulting from the Cartesian product of a triangle and a square.
The 3-4 duoprism exists in some of the uniform 5-polytopes in the B5 family.
The quasiregular complex polytope 3{}×4{}, , in has a real representation as a 3-4 duoprism in 4-dimensional space. It has 12 vertices, and 4 3-edges and 3 4-edges. Its symmetry is 3[2]4, order 12.
The birectified 5-cube, has a uniform 3-4 duoprism vertex figure:
The dual of a 3-4 duoprism is called a 3-4 duopyramid. It has 12 digonal disphenoid cells, 24 isosceles triangular faces, 12 edges, and 7 vertices.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the geometry of 4 dimensions, the 3-3 duoprism or triangular duoprism is a four-dimensional convex polytope. It can be constructed as the Cartesian product of two triangles and is the simplest of an infinite family of four-dimensional polytopes constructed as Cartesian products of two polygons, the duoprisms. It has 9 vertices, 18 edges, 15 faces (9 squares, and 6 triangles), in 6 triangular prism cells. It has Coxeter diagram , and symmetry , order 72. Its vertices and edges form a rook's graph.
In geometry, a complex polytope is a generalization of a polytope in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one. A complex polytope may be understood as a collection of complex points, lines, planes, and so on, where every point is the junction of multiple lines, every line of multiple planes, and so on. Precise definitions exist only for the regular complex polytopes, which are configurations.
In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an n-polytope and an m-polytope is an (n+m)-polytope, where n and m are dimensions of 2 (polygon) or higher. The lowest-dimensional duoprisms exist in 4-dimensional space as 4-polytopes being the Cartesian product of two polygons in 2-dimensional Euclidean space.