Philippe GilletPhilippe GILLET completed his undergraduate studies in Earth Science at Ecole normale supérieure de la rue dUlm (Paris). In 1983 he obtained a PhD in Geophysics at Université de Paris VII and joined Université de Rennes I as an assistant. Having obtained a State Doctorate in 1988, he became a Professor at this same university, which he left in 1992 to join Ecole normale supérieure de Lyon.
The first part of his research career was devoted to the formation of mountain ranges particularly of the Alps. In parallel, he developed experimental techniques (diamond anvil cells) to recreate the pressure and temperature prevailing deep inside planets in the lab. These experiments aim at understanding what materials make up the unreachable depths of planets in the solar system.
In 1997, Gillet started investigating extraterrestrial matter. He was involved in describing meteorites coming from Mars, the moon or planets which have disappeared today and explaining how these were expelled from their original plant by enormous shocks which propelled them to Earth. He also participated in the NASA Stardust program and contributed to identify comet grains collected from the tail of Comet Wild 2 and brought back to Earth. These grains represent the initial minerals in our solar system and were formed over 4.5 billion years ago. He has also worked on the following subjects:
Interactions between bacteria and minerals.
Solid to glass transition under pressure.
Experimental techniques: laser-heated diamond anvil cell, Raman spectroscopy, X-ray diffraction with synchrotron facilities, electron microscopy.
Philippe Gillet is also active in science and education management. He was the Director of the CNRS Institut National des Sciences de lUnivers (France), the President of the French synchrotron facility SOLEIL and of the French National Research Agency (2007), and the Director of Ecole normale supérieure de Lyon. Before joining EPFL he was the Chief of Staff of the French Minister of Higher Education and Research.
Selected publications:
Ferroir, T., L. Dubrovinsky, A. El Goresy, A. Simionovici, T. Nakamura, and P. Gillet (2010), Carbon polymorphism in shocked meteorites: Evidence for new natural ultrahard phases, Earth and Planetary Science Letters, 290(1-2), 150-154.
Barrat J.A., Bohn M., Gillet Ph., Yamaguchi A. (2009) Evidence for K-rich terranes on Vesta from impact spherules. Meteoritics & Planetary Science, 44, 359374.
Brownlee D, Tsou P, Aleon J, et al. (2006) Comet 81P/Wild 2 under a microscope. Science, 314, 1711-1716.
Beck P., Gillet Ph., El Goresy A., and Mostefaoui S. (2005) Timescales of shock processes in chondrites and Martian meteorites. Nature 435, 1071-1074.
Blase X., Gillet Ph., San Miguel A. and Mélinon P. (2004) Exceptional ideal strength of carbon clathrates. Phys. Rev. Lett. 92, 215505-215509.
Gillet Ph. (2002) Application of vibrational spectroscopy to geology. In Handbook of vibrational spectroscopy, Vol. 4 (ed. J. M. Chalmers and P. R. Griffiths), pp. 1-23. John Wiley & Sons.
Gillet Ph., Chen C., Dubrovinsky L., and El Goresy A. (2000) Natural NaAlSi3O8 -hollandite in the shocked Sixiangkou meteorite. Science 287, 1633-1636.
Jürgen BruggerI am a Professor of Microengineering and co-affiliated to Materials Science. Before joining EPFL I was at the MESA Research Institute of Nanotechnology at the University of Twente in the Netherlands, at the IBM Zurich Research Laboratory, and at the Hitachi Central Research Laboratory, in Tokyo, Japan. I received a Master in Physical-Electronics and a PhD degree from Neuchâtel University, Switzerland. Research in my laboratory focuses on various aspects of MEMS and Nanotechnology. My group contributes to the field at the fundamental level as well as in technological development, as demonstrated by the start-ups that spun off from the lab. In our research, key competences are in micro/nanofabrication, additive micro-manufacturing, new materials for MEMS, increasingly for wearable and biomedical applications. Together with my students and colleagues we published over 200 peer-refereed papers and I had the pleasure to supervise over 25 PhD students. Former students and postdocs have been successful in receiving awards and starting their own scientific careers. I am honoured for the appointment in 2016 as Fellow of the IEEE “For contributions to micro and nano manufacturing technology”. In 2017 my lab was awarded an ERC AdvG in the field of advanced micro-manufacturing.
Raphaël ButtéRaphaël Butté was born in Paris, France, in 1973. He received the PhD degree from the University Claude Bernard, Lyon, France, in 2000 for his research on the structural and optoelectronic properties of hydrogenated nanostructured silicon thin films with potential applications for photovoltaics and thin film transistors. He then moved to the University of Sheffield (2000-2003), UK, to work as postdoctoral research associate in the group of Prof. Maurice S. Skolnick (Fellow of the Royal Society). His research shifted to the optical properties of III-V semiconductors with a main focus on the nonlinear optical properties of cavity polaritons occurring in GaAs-based microcavities driven under resonant optical excitation. In 2004, he moved to Ecole Polytechnique Fédérale de Lausanne (EPFL) as scientific collaborator in charge of optical spectroscopy at LASPE (http://laspe.epfl.ch/), a newly established laboratory directed by Prof. Nicolas Grandjean. In 2010, he became permanent member of staff (Scientific Collaborator and Lecturer). He was promoted to the position of Senior Scientist in 2016. His current research activity deals with planar waveguides, microdisks and photonic crystals made from III-nitride semiconductors. In particular, he is leading the activity focusing on: (i) the physics of exciton-polaritons in planar waveguides and (ii) high-β photonic crystal nanolasers. He is the author of 119 scientific articles published in peer-reviewed international journals, 14 publications published in peer reviewed journals following an international conference (Web of Science > 4500 citations, h-index: 36; Google Scholar > 6200 citations, h-index: 42) and 6 book chapters. He has given 30 invited talks in International Conferences/Winter-Summer Schools/Workshops. He has been the Publications Chair/Guest Editor of the Proceedings of the 5th International Workshop on Nitride semiconductors (IWN2008) and also served as Scientific Secretary of IWN2008 and of the 5th International Conference on Spontaneous Coherence in Excitonic Systems (ICSCE5). In 2012, he was one of the 149 scientists recognized by the Outstanding Referee program (http://publish.aps.org/OutstandingReferees) of the American Physical Society (APS) selected from a pool of roughly 60,000 currently active referees. Since September 2019, he is an Editorial Board Member of the newly launched open access APS journal, Physical Review Research. From September 2013 until December 2017, he was one of the Editors of the journal "Superlattices and Microstructures" (Elsevier). Since September 2015 he is a member of the Physics Doctoral School Teaching Committee. He was also a member of the EPFL Teaching Conference from September 2015 until August 2017. Jean-Philippe AnsermetJean-Philippe Ansermet was born March 1, 1957 in Lausanne (legal origin Vaumarcus, NE). He obtained a diploma as physics engineer of EPFL in 1980. He went on to get a PhD from the University of Illinois at Urbana-Champaign where, from 1985 to 1987, he persued as post-doc with Prof. Slichter his research on catalysis by solid state NMR studies of molecules bound to the surface of catalysts. From 1987 to 1992 he worked at the materials research center of Ciba-Geigy, on polymers for microelectronics, composites, dielectrics and organic charge transfer complexes. In March 1992, as professor of experimental physics, he developed a laboratory on the theme of nanostructured materials and turned full professor in 1995. Since 1992, he teaches classical mechanics, first to future engineering students, since 2004 to physics majors. Since 2000, he teaches thermodynamics also, to the same group of students. He offers a graduate course in spintronics, and another on spin dynamics. His research activities concern the fabrication and properties of magnetic nanostructures produced by electrodeposition. His involvement since the early days of spintronics have allowed him to gain recognition for his work on giant magnetoresistance (CPP-GMR), magnetic relaxation of single nanostructures, and was among the leading groups demonstrating magnetization reversal by spin-polarized currents. Furthermore, his group uses nuclear magnetic resonance , on the one hand as means of investigation of surfaces and electrodes, on the other hand, as a local probe of the electronic properties of complex ferromagnetic oxides.
François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Alexander TagantsevALEXANDER K. TAGANTSEV received the B.S. degree from St. Petersburg State University, in 1974, and Ph.D. degree from Ioffe Physico-Technical Institute, St. Petersburg, Russia, in 1982 in solid state physics. Before 1993, he worked in Ioffe Physico-Technical Institute, (1991-1993, head of laboratory), and St. Petersburg State Technical University (1991-1993, professor). He joined the ceramics laboratory of EPFL in 1993 where he was leading ( up to 2016) the section for Modeling and theory of Electroceramics. He is also currently engaged as a principle research fellow at Ioffe institute (St. Petersburg, Russia). Tagantsev is a theoretician of a broad domain of expertise from ferroelectricity and phonon physics to electrodynamics of superconductors and quantum optics. He is the author of key results on the theory of microwave dielectrics loss, dielectric polarization in crystalline materials, and relaxor ferroelectricity. He is also known in the field of ferroelectric thin films for elucidating works on the polarization switching and degradation in these systems. He authored or co-authored more than 300 scientific articles and two monograph (on domains in ferroics and tunable film bulk acoustic wave resonators). In 2007, Prof. Tagantsev was entitled to the Honors for lifetime achievement in the field of integrated ferroelectrics by the International Symposium on Integrated Ferroelectrics.
Luc ThévenazLuc Thévenaz received in 1982 the M.Sc. degree in astrophysics from the Observatory of Geneva, Switzerland, and in 1988 the Ph.D. degree in physics from the University of Geneva, Switzerland. He developed at this moment his field of expertise, i.e. fibre optics. In 1988 he joined the Swiss Federal Institute of Technology of Lausanne (EPFL) where he currently leads a research group involved in photonics, namely fibre optics and optical sensing. Research topics include Brillouin-scattering fibre sensors, nonlinear fibre optics, slow & fast light and laser spectroscopy in gases. His main achievements are: - the invention of a novel configuration for distributed Brillouin fibre sensing based on a single laser source, resulting in a high intrinsic stability making for the first time field measurements possible, - the development of a photoacoustic gas trace sensor using a near infra-red semiconductor laser, detecting a gas concentration at the ppb level, - the first experimental demonstration of optically-controlled slow & fast light in optical fibres, realized at ambient temperature and operating at any wavelength since based on stimulated Brillouin scattering. The first negative group velocity of light was also realized in optical fibres using this approach. In 1991, he visited the PUC University in Rio de Janeiro, Brazil where he worked on the generation of picosecond pulses in semiconductor lasers. In 1991-1992 he stayed at Stanford University, USA, where he participated in the development of a Brillouin laser gyroscope. He joined in 1998 the company Orbisphere Laboratories SA in Neuchâtel, Switzerland, as Expert Scientist to develop gas trace sensors based on photoacoustic laser spectroscopy. In 1998 and 1999 he visited the Korea Advanced Institute of Science and Technology (KAIST) in Daejon, South Korea, where he worked on fibre laser current sensors. In 2000 he co-founded the spin-off company Omnisens that is developing and commercializing advanced photonic instrumentation. In 2007 he visited Tel Aviv University where he studied the all-optical control of polarization in optical fibres. During winter 2010 he stayed at the University of Sydney where he studied applications of stimulated Brillouin scattering in chalcogenide waveguides. In 2014 he stayed at the Polytechnic University of Valencia where he worked on microwave applications of stimulated Brillouin scattering. He was member of the Consortium in the FP7 European Project GOSPEL "Governing the speed of light", was Chairman of the European COST Action 299 "FIDES: Optical Fibres for New Challenges Facing the Information Society" and is author or co-author of some 480 publications and 12 patents. He is now Coordinator of the H2020 Marie Skłodowska-Curie Innovative Training Networks FINESSE (FIbre NErve Systems for Sensing). He is co-Executive Editor-in-Chief of the journal "Nature Light: Science & Applications" and is Member of the Editorial Board (Associate Editor) for the journal "APL Photonics" & "Laser & Photonics Reviews". He is also Fellow of both the IEEE and the Optical Society (OSA).
Klaus KernKlaus Kern is Professor of Physics at EPFL and Director and Scientific Member at the Max-Planck-Institute for Solid State Research in Stuttgart, Germany. He also is Honorary Professor at the University of Konstanz, Germany. His present research interests are in nanoscale science, quantum technology and in microscopy at the atomic limits of space and time. He holds a chemistry degree and PhD from the University of Bonn and a honorary doctors degree from the University of Aalborg. After his doctoral studies he was staff scientist at the Research Center Jülich and visiting scientist at Bell Laboratories, Murray Hill before joining the Faculty of EPFL in 1991 and the Max-Planck-Society in 1998. Professor Kern has authored and coauthored close to 700 scientific publications, which have received nearly 60‘000 citations. He has served frequently on advisory committees to universities, professional societies and institutions and has received numerous scientific awards and honors, including the 2008 Gottfried-Wilhelm-Leibniz Prize and the 2016 Van‘t Hoff Prize. Prof. Kern has also educated a large number of leading scientists in nanoscale physics and chemistry. During the past twenty-five years he has supervised one hundred PhD students and sixty postdoctoral fellows. Today, more than fifty of his former students and postdocs hold prominent faculty positions at Universities around the world.
Dragan DamjanovicDragan Damjanovic received BSc diploma in Physics from the Faculty of Natural Sciences and Mathematics, University of Sarajevo, in 1980, and PhD in Ceramics Science from the Department of Materials Science and Engineering, College of Earth and Mineral Sciences, the Pennsylvania State University (PSU) in 1987. From 1988 to 1991 he was a research associate in the Materials Research Laboratory at the PSU. He joined the Ceramics Laboratory, Department of Materials Science and Engineering, Ecole polytechnique fédérale de Lausanne in 1991. He is currently a "professeur titulaire", heads the Group for Ferroelectrics and Functional Oxides at the Institute of Materials and teaches undergraduate and graduate courses on structure and electrical properties of materials. The research activities include fundamental and applied investigations of piezoelectric, ferroelectric and dielectric properties of a broad class of materials.