Fold (higher-order function)In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value. Typically, a fold is presented with a combining function, a top node of a data structure, and possibly some default values to be used under certain conditions.
Variadic functionIn mathematics and in computer programming, a variadic function is a function of indefinite arity, i.e., one which accepts a variable number of arguments. Support for variadic functions differs widely among programming languages. The term variadic is a neologism, dating back to 1936–1937. The term was not widely used until the 1970s. There are many mathematical and logical operations that come across naturally as variadic functions.
Unit typeIn the area of mathematical logic and computer science known as type theory, a unit type is a type that allows only one value (and thus can hold no information). The carrier (underlying set) associated with a unit type can be any singleton set. There is an isomorphism between any two such sets, so it is customary to talk about the unit type and ignore the details of its value. One may also regard the unit type as the type of 0-tuples, i.e. the of no types. The unit type is the terminal object in the of types and typed functions.
Function overloadingIn some programming languages, function overloading or method overloading is the ability to create multiple functions of the same name with different implementations. Calls to an overloaded function will run a specific implementation of that function appropriate to the context of the call, allowing one function call to perform different tasks depending on context. For example, and are overloaded functions. To call the latter, an object must be passed as a parameter, whereas the former does not require a parameter, and is called with an empty parameter field.
Compiled languageA compiled language is a programming language whose implementations are typically compilers (translators that generate machine code from source code), and not interpreters (step-by-step executors of source code, where no pre-runtime translation takes place). The term is somewhat vague. In principle, any language can be implemented with a compiler or with an interpreter. A combination of both solutions is also common: a compiler can translate the source code into some intermediate form (often called p-code or bytecode), which is then passed to an interpreter which executes it.
MixinIn object-oriented programming languages, a mixin (or mix-in) is a class that contains methods for use by other classes without having to be the parent class of those other classes. How those other classes gain access to the mixin's methods depends on the language. Mixins are sometimes described as being "included" rather than "inherited". Mixins encourage code reuse and can be used to avoid the inheritance ambiguity that multiple inheritance can cause (the "diamond problem"), or to work around lack of support for multiple inheritance in a language.
SemicolonThe semicolon or semi-colon is a symbol commonly used as orthographic punctuation. In the English language, a semicolon is most commonly used to link (in a single sentence) two independent clauses that are closely related in thought, such as when restating the preceding idea with a different expression. When a semicolon joins two or more ideas in one sentence, those ideas are then given equal rank. Semicolons can also be used in place of commas to separate items in a list, particularly when the elements of the list themselves have embedded commas.
Algebraic data typeIn computer programming, especially functional programming and type theory, an algebraic data type (ADT) is a kind of composite type, i.e., a type formed by combining other types. Two common classes of algebraic types are product types (i.e., tuples and records) and sum types (i.e., tagged or disjoint unions, coproduct types or variant types). The values of a product type typically contain several values, called fields. All values of that type have the same combination of field types.
Abstract typeIn programming languages, an abstract type is a type in a nominative type system that cannot be instantiated directly; a type that is not abstract – which can be instantiated – is called a concrete type. Every instance of an abstract type is an instance of some concrete subtype. Abstract types are also known as existential types. An abstract type may provide no implementation, or an incomplete implementation. In some languages, abstract types with no implementation (rather than an incomplete implementation) are known as protocols, interfaces, signatures, or class types.
History of programming languagesThe history of programming languages spans from documentation of early mechanical computers to modern tools for software development. Early programming languages were highly specialized, relying on mathematical notation and similarly obscure syntax. Throughout the 20th century, research in compiler theory led to the creation of high-level programming languages, which use a more accessible syntax to communicate instructions. The first high-level programming language was Plankalkül, created by Konrad Zuse between 1942 and 1945.