Triangulation of a surface means
a net of triangles, which covers a given surface partly or totally, or
the procedure of generating the points and triangles of such a net of triangles.
This article describes the generation of a net of triangles. In literature there are contributions which deal with the optimization of a given net.
Surface triangulations are important for
visualizing surfaces and
the application of finite element methods.
The triangulation of a parametrically defined surface is simply achieved by triangulating the area of definition (see second figure, depicting the Monkey Saddle). However, the triangles may vary in shape and extension in object space, posing a potential drawback. This can be minimized through adaptive methods that consider step width while triangulating the parameter area.
To triangulate an implicit surface (defined by one or more equations) is more difficult.
There exist essentially two methods.
One method divides the 3D region of consideration into cubes and determines the intersections of the surface with the edges of the cubes in order to get polygons on the surface, which thereafter have to be triangulated (cutting cube method). The expenditure for managing the data is great.
The second and simpler concept is the marching method. The triangulation starts with a triangulated hexagon at a starting point. This hexagon is then surrounded by new triangles, following given rules, until the surface of consideration is triangulated. If the surface consists of several components, the algorithm has to be started several times using suitable starting points.
The cutting cube algorithm determines, at the same time, all components of the surface within the surrounding starting cube depending on prescribed limit parameters. An advantage of the marching method is the possibility to prescribe boundaries (see picture).
Polygonizing a surface means to generate a polygon mesh.
The triangulation of a surface should not be confused with the triangulation of a discrete prescribed plane set of points.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Mesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI , depending on the complexity of the domain and the type of mesh desired.
In 3D computer graphics and solid modeling, a polygon mesh is a collection of , s and s that defines the shape of a polyhedral object. The faces usually consist of triangles (triangle mesh), quadrilaterals (quads), or other simple convex polygons (n-gons), since this simplifies rendering, but may also be more generally composed of concave polygons, or even polygons with holes. The study of polygon meshes is a large sub-field of computer graphics (specifically 3D computer graphics) and geometric modeling.
,
A method for enforcing smoothness constraints on surface meshes produced by a Graph Convolutional Neural Network (GCNN) including the steps of reading image data from a memory, the image data including two-dimensional image data representing a three-dimens ...
2023
, , , ,
Context: Introducing Computer Science (CS) into formal education can be challenging, notably when considering the numerous stakeholders involved which include the students, teachers, schools, and policy makers. We believe these perspectives should be con ...
2023
, ,
Unsigned Distance Fields (UDFs) can be used to represent non-watertight surfaces. However, current approaches to converting them into explicit meshes tend to either be expensive or to degrade the accuracy. Here, we extend the marching cube algorithm to han ...