Related courses (28)
MATH-110(a): Advanced linear algebra I - vector spaces
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire (pour les futurs mathématiciens) et de démontrer rigoureusement les résultats principaux de ce sujet.
COM-611: Quantum Information Theory and Computation
Today one is able to manipulate matter at the nanoscale were quantum behavior becomes important and possibly information processing will have to take into account laws of quantum physics. We introduce
MATH-561: Spectral theory
This course is an introduction to the spectral theory of linear operators acting in Hilbert spaces. The main goal is the spectral decomposition of unbounded selfadjoint operators. We will also give el
PHYS-641: Quantum Computing
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
PHYS-207(c): General physics : quanta
Le cours traite les ondes électromagnétiques (optique géométrique et optique physique) et donne une introduction à la physique quantique.
CH-110: Advanced general chemistry I
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
PHYS-314: Quantum physics II
The aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
COM-309: Introduction to quantum information processing
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.