Concept

Vampire squid

The vampire squid (Vampyroteuthis infernalis, lit. 'vampire squid from hell') is a small cephalopod found throughout temperate and tropical oceans in extreme deep sea conditions. The vampire squid uses its bioluminescent organs and its unique oxygen metabolism to thrive in the parts of the ocean with the lowest concentrations of oxygen. It has two long retractile filaments, located between the first two pairs of arms on its dorsal side, which distinguish it from both octopuses and squids, and places it in its own order, Vampyromorphida, although its closest relatives are octopods. As a phylogenetic relict, it is the only known surviving member of its order. The first specimens were collected on the Valdivia Expedition and were originally described as an octopus in 1903 by German teuthologist Carl Chun, but later assigned to a new order together with several extinct taxa. The vampire squid was discovered during the Valdivia Expedition (1898–1899), led by Carl Chun. Chun was a zoologist who was inspired by the Challenger Expedition, and wanted to verify that life does indeed exist below 300 fathoms (550 meters). Chun later classified the vampire squid into its family, Vampyroteuthidae. This expedition was funded by the German society Gesellschaft Deutscher Naturforscher und Ärzte, a group of German scientists who believed there was life at depths greater than 550 meters, contrary to the Abyssus theory. was fitted with equipment for the collection of deep-sea organisms, as well as laboratories and specimen jars, in order to analyze and preserve what was caught. The voyage began in Hamburg, Germany, followed by Edinburgh, and then traced around the west coast of Africa. After navigating around the southern point of Africa, the expedition studied deep areas of the Indian and Antarctic Ocean. The vampire squid can reach a maximum total length around . Its gelatinous body varies in colour from velvety jet-black to pale reddish, depending on location and lighting conditions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (5)

Visualizing chemical transport from extracellular symbionts into squid host tissues using NanoSIMS

Stéphanie Kéren Cohen

Chemical communication is the basis of host-microbe interaction. Insights into this communication will provide a deeper understanding of the mechanisms that govern these complex associations, in beneficial as well as pathogenic contexts. In this dissertati ...
EPFL2017

Tracking the signaling cargo of extracellular symbionts into host tissues

Anders Meibom, Julia Marie Jeanne Yvonne Bodin, Stéphanie Kéren Cohen

Animal-microbe symbioses are fundamental to animal physiology but how and where bacteria interact with their host, remain largely elusive. The mutualistic association between the Hawaiian bobtail squid, Euprymna scolopes and its luminous bacterium Vibrio f ...
2016

Tracking the signaling cargo of extracellular symbionts into host tissues

Anders Meibom, Julia Marie Jeanne Yvonne Bodin, Stéphanie Kéren Cohen

Animal-microbe symbioses are fundamental to animal physiology but the precise nature of molecular exchange between partners remains largely elusive. The mutualistic association between the Hawaiian bobtail squid, Euprymna scolopes and its luminous bacteriu ...
2016
Show more
Related people (1)
Related concepts (7)
Marine snow
In the deep ocean, marine snow (also known as "ocean dandruff") is a continuous shower of mostly organic detritus falling from the upper layers of the water column. It is a significant means of exporting energy from the light-rich photic zone to the aphotic zone below, which is referred to as the biological pump. Export production is the amount of organic matter produced in the ocean by primary production that is not recycled (remineralised) before it sinks into the aphotic zone.
Bathypelagic zone
The bathypelagic zone or bathyal zone (from Greek βαθύς (bathýs), deep) is the part of the open ocean that extends from a depth of below the ocean surface. It lies between the mesopelagic above and the abyssopelagic below. The bathypelagic is also known as the midnight zone because of the lack of sunlight; this feature does not allow for photosynthesis-driven primary production, preventing growth of phytoplankton or aquatic plants. Although larger by volume than the photic zone, human knowledge of the bathypelagic zone remains limited by ability to explore the deep ocean.
Chromatophore
Chromatophores are cells that produce color, of which many types are pigment-containing cells, or groups of cells, found in a wide range of animals including amphibians, fish, reptiles, crustaceans and cephalopods. Mammals and birds, in contrast, have a class of cells called melanocytes for coloration. Chromatophores are largely responsible for generating skin and eye colour in ectothermic animals and are generated in the neural crest during embryonic development.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.