Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We study the energy-critical nonlinear Schrodinger equation with randomised initial data in dimensions d > 6. We prove that the Cauchy problem is almost surely globally well-posed with scattering for randomised supercritical initial data in H-s(Rd) wheneve ...
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
We consider the problem of sampling from a density of the form p(x) ? exp(-f (x) - g(x)), where f : Rd-+ R is a smooth function and g : R-d-+ R is a convex and Lipschitz function. We propose a new algorithm based on the Metropolis-Hastings framework. Under ...
The interior transmission eigenvalue problem is a system of partial differential equations equipped with Cauchy data on the boundary: the transmission conditions. This problem appears in the inverse scattering theory for inhomogeneous media when, for some ...
Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, an ...
Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of an analytical function to obtain a few new criteria equivalent to the Riemann hypothesis. Here, the same theorem is applied to calcul ...
We consider the problem of provably finding a stationary point of a smooth function to be minimized on the variety of bounded-rank matrices. This turns out to be unexpectedly delicate. We trace the difficulty back to a geometric obstacle: On a nonsmooth se ...
Representing and reconstructing 3D deformable shapes are two tightly linked problems that have long been studied within the computer vision field. Deformable shapes are truly ubiquitous in the real world, whether be it specific object classes such as human ...
Modern optimization is tasked with handling applications of increasingly large scale, chiefly due to the massive amounts of widely available data and the ever-growing reach of Machine Learning. Consequently, this area of research is under steady pressure t ...
We propose a stochastic conditional gradient method (CGM) for minimizing convex finitesum objectives formed as a sum of smooth and non-smooth terms. Existing CGM variants for this template either suffer from slow convergence rates, or require carefully inc ...