Riemann hypothesisIn mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named.
Primorial primeIn mathematics, a primorial prime is a prime number of the form pn# ± 1, where pn# is the primorial of pn (i.e. the product of the first n primes). Primality tests show that pn# − 1 is prime for n = 2, 3, 5, 6, 13, 24, ... pn# + 1 is prime for n = 0, 1, 2, 3, 4, 5, 11, ... The first term of the second sequence is 0 because p0# = 1 is the empty product, and thus p0# + 1 = 2, which is prime. Similarly, the first term of the first sequence is not 1, because p1# = 2, and 2 − 1 = 1 is not prime.
Square-free integerIn mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are Every positive integer can be factored in a unique way as where the different from one are square-free integers that are pairwise coprime.
66 (six) is the natural number following 5 and preceding 7. It is a composite number and the smallest perfect number. Six is the smallest positive integer which is neither a square number nor a prime number. It is the second smallest composite number after four, equal to the sum and the product of its three proper divisors (, and ). As such, 6 is the only number that is both the sum and product of three consecutive positive numbers. It is the smallest perfect number, which are numbers that are equal to their aliquot sum, or sum of their proper divisors.
24 (number)24 (twenty-four) is the natural number following 23 and preceding 25. 24 is an even composite number, with 2 and 3 as its distinct prime factors. It is the first number of the form 2^qq, where q is an odd prime. It is the smallest number with at least eight positive divisors: 1, 2, 3, 4, 6, 8, 12, and 24; thus, it is a highly composite number, having more divisors than any smaller number. Furthermore, it is an abundant number, since the sum of its proper divisors (36) is greater than itself, as well as a superabundant number.
Euler's totient functionIn number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n. It is written using the Greek letter phi as or , and may also be called Euler's phi function. In other words, it is the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n. For example, the totatives of n = 9 are the six numbers 1, 2, 4, 5, 7 and 8.
23 (number)23 (twenty-three) is the natural number following 22 and preceding 24. Twenty-three is the ninth prime number, the smallest odd prime that is not a twin prime. It is, however, a cousin prime with 19, and a sexy prime with 17 and 29; while also being the largest member of the first prime sextuplet (7, 11, 13, 17, 19, 23). Twenty-three is also the fifth factorial prime, the second Woodall prime, and a happy number in decimal.
Divisor functionIn mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.
Prime-counting functionIn mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by pi(x) (unrelated to the number pi). Prime number theorem Of great interest in number theory is the growth rate of the prime-counting function. It was conjectured in the end of the 18th century by Gauss and by Legendre to be approximately where log is the natural logarithm, in the sense that This statement is the prime number theorem.
Prime numberA prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4.