François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Vassily HatzimanikatisDr. Vassily Hatzimanikatis is currently Associate Professor of Chemical Engineering and Bioengineering at Ecole Polytechnique Federale de Lausanne (EPFL), in Lausanne, Switzerland. Vassily received a PhD and an MS in Chemical Engineering from the California Institute of Technology, and his Diploma in Chemical Engineering from the University of Patras, in Greece. After the completion of his doctoral studies, he held a research group leader position at the Swiss Federal Institute of Technology in Zurich (ETHZ), Switzerland. Prior to joining EPFL, Vassily worked for three years in DuPont, Cargill, and Cargill Dow, and he has been assistant professor at Northwestern University, at Illinois, USA.
Vassilys research interests are in the areas of computational systems biology, biotechnology, and complexity. He is associate editor of the journals Biotechnology & Bioengineering, Metabolic Engineering and Integrative Biology, and he serves on the editorial advisory board of the journals Bioprocess and Biosystems Engineering, Journal of Chemical Technology and Biotechnology, and Industrial Biotechnology. He has written over 70 technical publications and he is co-inventor in three patents and patent applications.
Vassily is a fellow of the American Institute for Medical and Biological Engineering (2010), he was a DuPont Young Professor (2001-2004), and he has also received the Jay Bailey Young Investigator Award in Metabolic Engineering (2000), and the ACS Elmar Gaden Award (2011).
Urs von StockarOriginaire de Zurich, Urs von Stockar est né en1942. Ingénieur chimiste diplômé de l'EPFZ en 1967, il y est ensuite assistant au Laboratoire de chimie technique et, en 1973, soutient sa thèse couronnée par la médaille d'argent de l'EPFZ.
De 1973 à 1976, il travaille au département de génie chimique de l'Université de Californie. Il y enseigne et participe au développement d'un procédé technique pour la conversion biologique de la cellulose en alcool.
En 1977, il est ingénieur chimiste chez Ciba-Geigy. Fin 1977 il est nommé professeur extraordinaire à l'EPFL. Il dirige l'Institut de génie chimique en 1978/79 et en 1989/90. Il est professeur ordinaire en 1982. En 1982/83 et 1993/95, il dirige le Département de chimie. Son enseignement et sa recherche traitent des opérations de transfert de masse et de la biotechnologie, il s'intéresse également aux questions de bioénergétique et de biothermodynamique. Collaborant avec l'UNIL et l'ISREC, son équipe développe des procédés de fabrication d'anticorps monoclônaux spéciaux, capables de protéger les muqueuses humaines. En 1990 il est nommé professeur associé à l'Université de Genève. Il représente la Suisse dans un groupe d'experts de la Fédération européenne de biotechnologie. Après avoir siégé pendant plusieurs années dans son Comité de direction, il a été nommé président de la Fédération Européenne de Biotechnologie pour la période 1996-97. Depuis 1991, il dirige le Comité de coordination suisse pour la biotechnologie.
Diploma in Chemical Eng.-1967-ETHZ, CH
Ph.D.-1972-ETHZ, CH
Postdoc. Fellow-1973-76-Univ. of California, Berkeley, US
Berend SmitBerend Smit received an MSc in Chemical Engineering in 1987 and an MSc in Physics both from the Technical University in Delft (the Netherlands). He received in 1990 cum laude PhD in Chemistry from Utrecht University (the Netherlands). He was a (senior) Research Physicists at Shell Research from 1988-1997, Professor of Computational Chemistry at the University of Amsterdam (the Netherlands) 1997-2007.
In 2004 Berend Smit was elected Director of the European Center of Atomic and Molecular Computations (CECAM) Lyon France. Since 2007 he is Professor of Chemical Engineering and Chemistry at U.C. Berkeley and Faculty Chemist at Materials Sciences Division, Lawrence Berkeley National Laboratory. Since 2014 he has been director of the Energy Center at EPFL.
Karen ScrivenerDe nationalité anglaise, Karen Scrivener est née en 1958. Au cours de sa carrière, ses travaux et sa recherche traitaient des domaines suivants: Identification du développement microstucturale pendant l'hydratation du ciment. Elaboration d'une approche multitechnique pour étudier la microstucture des ciments et bétons, avec accent sur la quantification par analyse des images d'électrons retrodiffusés. Caractérisation de l'auréole de transition de la pâte de ciment autour des granulats. Compréhension des processus de dégardation des bétons, en particulier le gonflement lié à la formation de l'éttringite retardée dans les bétons étuvés.
Jan Van HerleBorn in Antwerp, Belgium. In Switzerland since 1983. Became Swiss citizen in 2004 out of conviction of principles of democracy and bottom-up participation. No double nationality. Village Council Member for 2 five-year mandates in 2006-2016.
1987 : Chemist from Basel University (CH).
1988 : Post-graduate IT diploma from Basel Engineering School.
1989 : Industry internship ABB Baden (CH).
1990-1993 : PhD Thesis EPFL, on Solid Oxide Fuel Cell cathode reaction mechanisms.
1994-1995 : Japanese Postdoctoral Fellowship in Tsukuba, Japan, on ceramic powders.
1995-2000 : Researcher at EPFL, Dpt. Chemistry : project responsible in PPM2 (materials), FP4-BriteEuram, NEDO (Japan), Swiss Gas Union (CH, oxygen membranes).
1998-2000 : Masters in Energy Technology, EPFL.
2000 : Cofounder of HTceramix SA (EPFL spin-off), now based in Yverdon (14 employees). Taken over by SOLIDpower in 2007, now 250 employees with 70 MCHF raised.
2000 : 1st Assistant and lecturer at LENI (STI-IGM) : fuel cell group responsible, projects on biogas (Federal Energy Office), woodgas (CCEM), fuel cell stacking (CTI, FP6, FNS), ceramic separation membranes (COST, FNS), microtubes (STI Seed), stability/lifetime/reliability in fuel cells (Electricité de France, swisselectric research). Currently 4 Ph D theses ongoing, 14 theses concluded, of which 5 colateral with SB and IMX. M.E.R. since Nov 2008.
Total funding raised so far >18 MCHF (50% as main applicant; 30% outside CH; 20% industry).
Scientific output : >135 peer-reviewed publications, >120 conference papers, 40 invited presentations (8 keynotes), >70 granted proposals.
Fluent in 5 languages (Dutch, French, German ( Swiss-german), English, Spanish).