Concept

Ball-pen probe

Summary
A ball-pen probe is a modified Langmuir probe used to measure the plasma potential in magnetized plasmas. The ball-pen probe balances the electron and ion saturation currents, so that its floating potential is equal to the plasma potential. Because electrons have a much smaller gyroradius than ions, a moving ceramic shield can be used to screen off an adjustable part of the electron current from the probe collector. Ball-pen probes are used in plasma physics, notably in tokamaks such as CASTOR, (Czech Academy of Sciences Torus) ASDEX Upgrade, COMPASS, ISTTOK, MAST, TJ-K, RFX, H-1 Heliac, IR-T1, GOLEM as well as low temperature devices as DC cylindrical magnetron in Prague and linear magnetized plasma devices in Nancy and Ljubljana. If a Langmuir probe (electrode) is inserted into a plasma, its potential is not equal to the plasma potential because a Debye sheath forms, but instead to a floating potential . The difference with the plasma potential is given by the electron temperature : where the coefficient is given by the ratio of the electron and ion saturation current density ( and ) and collecting areas for electrons and ions ( and ): The ball-pen probe modifies the collecting areas for electrons and ions in such a way that the ratio is equal to one. Consequently, and the floating potential of the ball-pen probe becomes equal to the plasma potential regardless of the electron temperature: A ball-pen probe consists of a conically shaped collector (non-magnetic stainless steel, tungsten, copper, molybdenum), which is shielded by an insulating tube (boron nitride, Alumina). The collector is fully shielded and the whole probe head is placed perpendicular to magnetic field lines. When the collector slides within the shield, the ratio varies, and can be set to 1. The adequate retraction length strongly depends on the magnetic field's value. The collector retraction should be roughly below the ion's Larmor radius.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.