Joint entropyIn information theory, joint entropy is a measure of the uncertainty associated with a set of variables. The joint Shannon entropy (in bits) of two discrete random variables and with images and is defined as where and are particular values of and , respectively, is the joint probability of these values occurring together, and is defined to be 0 if . For more than two random variables this expands to where are particular values of , respectively, is the probability of these values occurring together, and is defined to be 0 if .
Kullback–Leibler divergenceIn mathematical statistics, the Kullback–Leibler divergence (also called relative entropy and I-divergence), denoted , is a type of statistical distance: a measure of how one probability distribution P is different from a second, reference probability distribution Q. A simple interpretation of the KL divergence of P from Q is the expected excess surprise from using Q as a model when the actual distribution is P.
Redundancy (information theory)In information theory, redundancy measures the fractional difference between the entropy H(X) of an ensemble X, and its maximum possible value . Informally, it is the amount of wasted "space" used to transmit certain data. Data compression is a way to reduce or eliminate unwanted redundancy, while forward error correction is a way of adding desired redundancy for purposes of error detection and correction when communicating over a noisy channel of limited capacity.
Information contentIn information theory, the information content, self-information, surprisal, or Shannon information is a basic quantity derived from the probability of a particular event occurring from a random variable. It can be thought of as an alternative way of expressing probability, much like odds or log-odds, but which has particular mathematical advantages in the setting of information theory. The Shannon information can be interpreted as quantifying the level of "surprise" of a particular outcome.
CovarianceIn probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the lesser values (that is, the variables tend to show similar behavior), the covariance is positive. In the opposite case, when the greater values of one variable mainly correspond to the lesser values of the other, (that is, the variables tend to show opposite behavior), the covariance is negative.
Time seriesIn mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value of the Dow Jones Industrial Average. A time series is very frequently plotted via a run chart (which is a temporal line chart).
Units of informationIn computing and telecommunications, a unit of information is the capacity of some standard data storage system or communication channel, used to measure the capacities of other systems and channels. In information theory, units of information are also used to measure information contained in messages and the entropy of random variables. The most commonly used units of data storage capacity are the bit, the capacity of a system that has only two states, and the byte (or octet), which is equivalent to eight bits.
Bayesian networkA Bayesian network (also known as a Bayes network, Bayes net, belief network, or decision network) is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG). It is one of several forms of causal notation. Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms.
Variation of informationIn probability theory and information theory, the variation of information or shared information distance is a measure of the distance between two clusterings (partitions of elements). It is closely related to mutual information; indeed, it is a simple linear expression involving the mutual information. Unlike the mutual information, however, the variation of information is a true metric, in that it obeys the triangle inequality. Suppose we have two partitions and of a set into disjoint subsets, namely and .
Total correlationIn probability theory and in particular in information theory, total correlation (Watanabe 1960) is one of several generalizations of the mutual information. It is also known as the multivariate constraint (Garner 1962) or multiinformation (Studený & Vejnarová 1999). It quantifies the redundancy or dependency among a set of n random variables. For a given set of n random variables , the total correlation is defined as the Kullback–Leibler divergence from the joint distribution to the independent distribution of , This divergence reduces to the simpler difference of entropies, where is the information entropy of variable , and is the joint entropy of the variable set .