Concept

Tritrophic interactions in plant defense

Summary
Tritrophic interactions in plant defense against herbivory describe the ecological impacts of three trophic levels on each other: the plant, the herbivore, and its natural enemies. They may also be called multitrophic interactions when further trophic levels, such as soil microbes, endophytes, or hyperparasitoids (higher-order predators) are considered. Tritrophic interactions join pollination and seed dispersal as vital biological functions which plants perform via cooperation with animals. Natural enemies—predators, pathogens, and parasitoids that attack plant-feeding insects—can benefit plants by hindering the feeding behavior of the harmful insect. It is thought that many plant traits have evolved in response to this mutualism to make themselves more attractive to natural enemies. This recruitment of natural enemies functions to protect against excessive herbivory and is considered an indirect plant defense mechanism. Traits attractive to natural enemies can be physical, as in the cases of domatia and nectaries; or chemical, as in the case of induced plant volatile chemicals that help natural enemies pinpoint a food source. Humans can take advantage of tritrophic interactions in the biological control of insect pests. Plants produce secondary metabolites known as allelochemicals. Rather than participating in basic metabolic processes, they mediate interactions between a plant and its environment, often attracting, repelling, or poisoning insects. They also help produce secondary cell wall components such as those that require amino acid modification. In a tritrophic system, volatiles, which are released into the air, are superior to surface chemicals in drawing foraging natural enemies from afar. Plants also produce root volatiles which will drive tritrophic interactions between below-ground herbivores and their natural enemies. Some plant volatiles can be smelled by humans and give plants like basil, eucalyptus, and pine their distinctive odors.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.