Concept

100 prisoners problem

The 100 prisoners problem is a mathematical problem in probability theory and combinatorics. In this problem, 100 numbered prisoners must find their own numbers in one of 100 drawers in order to survive. The rules state that each prisoner may open only 50 drawers and cannot communicate with other prisoners. At first glance, the situation appears hopeless, but a clever strategy offers the prisoners a realistic chance of survival. Danish computer scientist Peter Bro Miltersen first proposed the problem in 2003. The 100 prisoners problem has different renditions in the literature. The following version is by Philippe Flajolet and Robert Sedgewick: The director of a prison offers 100 death row prisoners, who are numbered from 1 to 100, a last chance. A room contains a cupboard with 100 drawers. The director randomly puts one prisoner's number in each closed drawer. The prisoners enter the room, one after another. Each prisoner may open and look into 50 drawers in any order. The drawers are closed again afterwards. If, during this search, every prisoner finds their number in one of the drawers, all prisoners are pardoned. If even one prisoner does not find their number, all prisoners die. Before the first prisoner enters the room, the prisoners may discuss strategy — but may not communicate once the first prisoner enters to look in the drawers. What is the prisoners' best strategy? If every prisoner selects 50 drawers at random, the probability that a single prisoner finds their number is 50%. Therefore, the probability that all prisoners find their numbers is the product of the single probabilities, which is (1/2)100 ≈ 0.0000000000000000000000000000008, a vanishingly small number. The situation appears hopeless. Surprisingly, there is a strategy that provides a survival probability of more than 30%. The key to success is that the prisoners do not have to decide beforehand which drawers to open. Each prisoner can use the information gained from the contents of every drawer they already opened to decide which one to open next.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.