Terrestrial animalTerrestrial animals are animals that live predominantly or entirely on land (e.g. cats, chickens, ants, spiders), as compared with aquatic animals, which live predominantly or entirely in the water (e.g. fish, lobsters, octopuses), and amphibians, which rely on a combination of aquatic and terrestrial habitats (e.g. frogs and newts). Some groups of insects are terrestrial, such as ants, butterflies, earwigs, cockroaches, grasshoppers and many others, while other groups are partially aquatic, such as mosquitoes and dragonflies, which pass their larval stages in water.
FlatwormThe flatworms, flat worms, Platyhelminthes, or platyhelminths (from the Greek πλατύ, platy, meaning "flat" and ἕλμινς (root: ἑλμινθ-), helminth-, meaning "worm") are a phylum of relatively simple bilaterian, unsegmented, soft-bodied invertebrates. Unlike other bilaterians, they are acoelomates (having no body cavity), and have no specialised circulatory and respiratory organs, which restricts them to having flattened shapes that allow oxygen and nutrients to pass through their bodies by diffusion.
SipunculaThe Sipuncula or Sipunculida (common names sipunculid worms or peanut worms) is a class containing about 162 species of unsegmented marine annelid worms. The name Sipuncula is from the genus name Sipunculus, and comes from the Latin siphunculus meaning a "small tube". Sipuncula was once considered a phylum, but was demoted to a class of Annelida, based on recent molecular work. Sipunculans vary in size but most species are under in length.
SpiraliaThe Spiralia are a morphologically diverse clade of protostome animals, including within their number the molluscs, annelids, platyhelminths and other taxa. The term Spiralia is applied to those phyla that exhibit canonical spiral cleavage, a pattern of early development found in most (but not all) members of the Lophotrochozoa. Members of the molluscs, annelids, platyhelminths and nemerteans have all been shown to exhibit spiral cleavage in its classical form.
Hox geneHox genes, a subset of homeobox genes, are a group of related genes that specify regions of the body plan of an embryo along the head-tail axis of animals. Hox proteins encode and specify the characteristics of 'position', ensuring that the correct structures form in the correct places of the body. For example, Hox genes in insects specify which appendages form on a segment (for example, legs, antennae, and wings in fruit flies), and Hox genes in vertebrates specify the types and shape of vertebrae that will form.
InvertebrateInvertebrates are a paraphyletic group of animals that neither possess nor develop a vertebral column (commonly known as a backbone or spine), derived from the notochord. This is a grouping including all animals apart from the chordate subphylum Vertebrata. Familiar examples of invertebrates include arthropods, mollusks, annelids, echinoderms and cnidarians. The majority of animal species are invertebrates; one estimate puts the figure at 97%. Many invertebrate taxa have a greater number and variety of species than the entire subphylum of Vertebrata.
NephridiumThe nephridium (plural nephridia) is an invertebrate organ, found in pairs and performing a function similar to the vertebrate kidneys (which originated from the chordate nephridia). Nephridia remove metabolic wastes from an animal's body. Nephridia come in two basic categories: metanephridia and protonephridia. All nephridia- and kidney- having animals belong to the clade Nephrozoa. A metanephridium (meta = "after") is a type of excretory gland found in many types of invertebrates such as annelids, arthropods and mollusca.
Marine larval ecologyMarine larval ecology is the study of the factors influencing dispersing larvae, which many marine invertebrates and fishes have. Marine animals with a larva typically release many larvae into the water column, where the larvae develop before metamorphosing into adults. Marine larvae can disperse over long distances, although determining the actual distance is challenging, because of their size and the lack of a good tracking method. Knowing dispersal distances is important for managing fisheries, effectively designing marine reserves, and controlling invasive species.
Soft-bodied organismSoft-bodied organisms are animals that lack skeletons. The group roughly corresponds to the group Vermes as proposed by Carl von Linné. All animals have muscles but, since muscles can only pull, never push, a number of animals have developed hard parts that the muscles can pull on, commonly called skeletons. Such skeletons may be internal, as in vertebrates, or external, as in arthropods. However, many animals groups do very well without hard parts.
AcoelaAcoela, or the acoels, is an order of small and simple invertebrates in the subphylum Acoelomorpha of phylum Xenacoelomorpha, a deep branching bilaterian group of animals, which resemble flatworms. Historically they were treated as an order of turbellarian flatworms. The etymology of "acoel" is from the Ancient Greek words ἀ (), the alpha privative, expressing negation or absence, and κοιλία (), meaning "cavity". This refers to the fact that acoels have a structure lacking a fluid-filled body cavity.