Concept

Space Engine Systems

Summary
Space Engine Systems Inc. (SES) is a Canadian aerospace company and is located in Edmonton, Alberta, Canada. The main focus of the company is the development of a light multi-fuel propulsion system (DASS Engine) to power a reusable single-stage-to-orbit (SSTO) and hypersonic cruise vehicle. Pumps, compressors, gear boxes, and other related technologies being developed are integrated into SES's major R&D projects. SES has collaborated with the University of Calgary to study and develop technologies in key technical areas of nanotechnology and high-speed aerodynamics. Space Engines Systems Inc. was established in 2012 to develop the DASS engine and related technologies in the aerospace sector. Space Engine Systems's promoters have been involved in the development of the engine for over 20 years. SES and CAN-K> work together to bring novel pumps, compressors, and gearbox systems to the aerospace industry as spin off applications. On May 10, 2012, SES publicly announced the launch of their company at the Farnborough Air Show (July 9–15, 2012). On August 6, they announced their participation in the AUVSI's Unmanned Systems North America. SES frequently attends major international trade shows in the aerospace sector including the Paris Air Show in 2013, 2015, and 2017 and the Farnborough Air Show in 2014 and 2016. The DASS engine is a pre-cooled combined cycle propulsion concept that can produce thrust over a wide range of vehicle flight Mach numbers (rest to hypersonic). Derivatives of the engine can be used for propulsion of an SSTO vehicle, long-range missiles, and hypersonic transport aircraft. The engine is being developed with the flexibility for various vehicles and mission profiles. The concept uses existing aerospace technologies, including conventional gas turbine components, and new developments in nanotechnology to overcome some of the key technical obstacles associated with overheating and fuel storage. In high-speed flight, the incoming air has a very high dynamic pressure and aerodynamic deceleration results in a rise in static pressure and temperature.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.