The Intertropical Convergence Zone (ITCZ ɪtʃ ), known by sailors as the doldrums or the calms because of its monotonous windless weather, is the area where the northeast and the southeast trade winds converge. It encircles Earth near the thermal equator though its specific position varies seasonally. When it lies near the geographic Equator, it is called the near-equatorial trough. Where the ITCZ is drawn into and merges with a monsoonal circulation, it is sometimes referred to as a monsoon trough, a usage that is more common in Australia and parts of Asia.
The ITCZ was originally identified from the 1920s to the 1940s as the Intertropical Front (ITF), but after the recognition in the 1940s and the 1950s of the significance of wind field convergence in tropical weather production, the term Intertropical Convergence Zone (ITCZ) was then applied.
The ITCZ appears as a band of clouds, usually thunderstorms, that encircle the globe near the Equator. In the Northern Hemisphere, the trade winds move in a southwestward direction from the northeast, while in the Southern Hemisphere, they move northwestward from the southeast. When the ITCZ is positioned north or south of the Equator, these directions change according to the Coriolis effect imparted by Earth's rotation. For instance, when the ITCZ is situated north of the Equator, the southeast trade wind changes to a southwest wind as it crosses the Equator. The ITCZ is formed by vertical motion largely appearing as convective activity of thunderstorms driven by solar heating, which effectively draw air in; these are the trade winds. The ITCZ is effectively a tracer of the ascending branch of the Hadley cell and is wet. The dry descending branch is the horse latitudes.
The location of the ITCZ gradually varies with the seasons, roughly corresponding with the location of the thermal equator. As the heat capacity of the oceans is greater than air over land, migration is more prominent over land.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Discusses the limitations, instability, and dynamics of extratropical cyclones, focusing on baroclinic instability and the role of cyclones in redistributing heat.
A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depending on its location and strength, a tropical cyclone is referred to by different names, including hurricane (ˈhʌrᵻkən,_-keɪn), typhoon (taɪ'fuːn), tropical storm, cyclonic storm, tropical depression, or simply cyclone.
The trade winds or easterlies are the permanent east-to-west prevailing winds that flow in the Earth's equatorial region. The trade winds blow mainly from the northeast in the Northern Hemisphere and from the southeast in the Southern Hemisphere, strengthening during the winter and when the Arctic oscillation is in its warm phase. Trade winds have been used by captains of sailing ships to cross the world's oceans for centuries. They enabled colonial expansion into the Americas, and trade routes to become established across the Atlantic Ocean and the Pacific Ocean.
The Hadley cell, also known as the Hadley circulation, is a global-scale tropical atmospheric circulation that features air rising near the equator, flowing poleward near the tropopause at a height of above the Earth's surface, cooling and descending in the subtropics at around 25 degrees latitude, and then returning equatorward near the surface. It is a thermally-direct circulation within the troposphere that emerges due to differences in insolation and heating between the tropics and the subtropics.
Anthropogenic modification of natural landscapes to urban environments impacts land-atmosphere interactions in the boundary layer. Ample research has demonstrated the effect of such landscape transitions on development of the urban heat island (UHI), but c ...
Wiley2024
This is chapter 1 of the State of Environmental Science in Svalbard (SESS) report 2022. We have used temperature measurements from a number of observatories in and above Svalbard to study temperature variations, and their relation to solar activity. Sea te ...
During calm cooling periods, differential cooling can induce winter cascading which is an important process for littoral-pelagic exchange and deep water renewal in large, deep lakes (Fer et al., 2001; Peeters et al., 2003). Generated in the shallow near-sh ...