In mathematical optimization, the ellipsoid method is an iterative method for minimizing convex functions. When specialized to solving feasible linear optimization problems with rational data, the ellipsoid method is an algorithm which finds an optimal solution in a number of steps that is polynomial in the input size. The ellipsoid method generates a sequence of ellipsoids whose volume uniformly decreases at every step, thus enclosing a minimizer of a convex function. The ellipsoid method has a long history. As an iterative method, a preliminary version was introduced by Naum Z. Shor. In 1972, an approximation algorithm for real convex minimization was studied by Arkadi Nemirovski and David B. Yudin (Judin). As an algorithm for solving linear programming problems with rational data, the ellipsoid algorithm was studied by Leonid Khachiyan; Khachiyan's achievement was to prove the polynomial-time solvability of linear programs. This was a notable step from a theoretical perspective: The standard algorithm for solving linear problems at the time was the simplex algorithm, which has a run time that typically is linear in the size of the problem, but for which examples exist for which it is exponential in the size of the problem. As such, having an algorithm that is guaranteed to be polynomial for all cases seemed like a theoretical breakthrough. Khachiyan's work showed, for the first time, that there can be algorithms for solving linear programs whose runtime can be proven to be polynomial. In practice, however, the algorithm is fairly slow and of little practical interest, though it provided inspiration for later work that turned out to be of much greater practical use. Specifically, Karmarkar's algorithm, an interior-point method, is much faster than the ellipsoid method in practice. Karmarkar's algorithm is also faster in the worst case. The ellipsoidal algorithm allows complexity theorists to achieve (worst-case) bounds that depend on the dimension of the problem and on the size of the data, but not on the number of rows, so it remained important in combinatorial optimization theory for many years.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (35)
Unweighted Bipartite Matching
Introduces unweighted bipartite matching and its solution using linear programming and the simplex method.
Integer Programming Basics
Introduces the basics of integer programming, including binary integer programs and constraint strategies.
Proximal Operators: Optimization Methods
Explores proximal operators, subgradient methods, and composite minimization in optimization.
Show more
Related concepts (8)
Karmarkar's algorithm
Karmarkar's algorithm is an algorithm introduced by Narendra Karmarkar in 1984 for solving linear programming problems. It was the first reasonably efficient algorithm that solves these problems in polynomial time. The ellipsoid method is also polynomial time but proved to be inefficient in practice. Denoting as the number of variables and as the number of bits of input to the algorithm, Karmarkar's algorithm requires operations on -digit numbers, as compared to such operations for the ellipsoid algorithm.
Simplex algorithm
In mathematical optimization, Dantzig's simplex algorithm (or simplex method) is a popular algorithm for linear programming. The name of the algorithm is derived from the concept of a simplex and was suggested by T. S. Motzkin. Simplices are not actually used in the method, but one interpretation of it is that it operates on simplicial cones, and these become proper simplices with an additional constraint. The simplicial cones in question are the corners (i.e., the neighborhoods of the vertices) of a geometric object called a polytope.
Interior-point method
Interior-point methods (also referred to as barrier methods or IPMs) are a certain class of algorithms that solve linear and nonlinear convex optimization problems. An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967 and reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, which runs in provably polynomial time and is also very efficient in practice.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.