Summary
The Routing Information Protocol (RIP) is one of the oldest distance-vector routing protocols which employs the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. The largest number of hops allowed for RIP is 15, which limits the size of networks that RIP can support. RIP implements the split horizon, route poisoning, and holddown mechanisms to prevent incorrect routing information from being propagated. In RIPv1 routers broadcast updates with their routing table every 30 seconds. In the early deployments, routing tables were small enough that the traffic was not significant. As networks grew in size, however, it became evident there could be a massive traffic burst every 30 seconds, even if the routers had been initialized at random times. In most networking environments, RIP is not the preferred choice of routing protocol, as its time to converge and scalability are poor compared to EIGRP, OSPF, or IS-IS. However, it is easy to configure, because RIP does not require any parameters, unlike other protocols. RIP uses the User Datagram Protocol (UDP) as its transport protocol, and is assigned the reserved port number 520. Based on the Bellman–Ford algorithm and the Ford–Fulkerson algorithm, distance-vector routing protocols started to be implemented from 1969 onwards in data networks such as the ARPANET and CYCLADES. The predecessor of RIP was the Gateway Information Protocol (GWINFO) which was developed by Xerox in the mid-1970s to route its experimental network. As part of the Xerox Network Systems (XNS) protocol suite GWINFO transformed into the XNS Routing Information Protocol. This XNS RIP in turn became the basis for early routing protocols, such as Novell's IPX RIP, AppleTalk's Routing Table Maintenance Protocol (RTMP), and the IP RIP. The 1982 Berkley Software Distribution of the UNIX operating system implemented RIP in the routed daemon. The 4.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
COM-407: TCP/IP networking
In the lectures you will learn and understand the main ideas that underlie and the way communication networks are built and run. In the labs you will exercise practical configurations.
EE-320: Analog IC design
Introduction to the design of analog CMOS integrated circuits at the transistor level. Understanding and design of basic structures.
COM-208: Computer networks
This course provides an introduction to computer networks. It describes the principles that underly modern network operation and illustrates them using the Internet as an example.
Show more
Related publications (94)
Related concepts (16)
Routing loop
A routing loop is a common problem with various types of networks, particularly computer networks. They are formed when an error occurs in the operation of the routing algorithm, and as a result, in a group of nodes, the path to a particular destination forms a loop. In the simplest version, a routing loop of size two, node A thinks that the path to some destination (call it C) is through its neighbouring node, node B. At the same time, node B thinks that the path to C starts at node A.
Distance-vector routing protocol
A distance-vector routing protocol in data networks determines the best route for data packets based on distance. Distance-vector routing protocols measure the distance by the number of routers a packet has to pass; one router counts as one hop. Some distance-vector protocols also take into account network latency and other factors that influence traffic on a given route. To determine the best route across a network, routers using a distance-vector protocol exchange information with one another, usually routing tables plus hop counts for destination networks and possibly other traffic information.
IPv6 address
An Internet Protocol Version 6 address (IPv6 address) is a numeric label that is used to identify and locate a network interface of a computer or a network node participating in a computer network using IPv6. IP addresses are included in the packet header to indicate the source and the destination of each packet. The IP address of the destination is used to make decisions about routing IP packets to other networks. IPv6 is the successor to the first addressing infrastructure of the Internet, Internet Protocol version 4 (IPv4).
Show more