Concept

Prime avoidance lemma

In algebra, the prime avoidance lemma says that if an ideal I in a commutative ring R is contained in a union of finitely many prime ideals Pi's, then it is contained in Pi for some i. There are many variations of the lemma (cf. Hochster); for example, if the ring R contains an infinite field or a finite field of sufficiently large cardinality, then the statement follows from a fact in linear algebra that a vector space over an infinite field or a finite field of large cardinality is not a finite union of its proper vector subspaces. The following statement and argument are perhaps the most standard. Statement: Let E be a subset of R that is an additive subgroup of R and is multiplicatively closed. Let be ideals such that are prime ideals for . If E is not contained in any of 's, then E is not contained in the union . Proof by induction on n: The idea is to find an element that is in E and not in any of 's. The basic case n = 1 is trivial. Next suppose n ≥ 2. For each i, choose where the set on the right is nonempty by inductive hypothesis. We can assume for all i; otherwise, some avoids all the 's and we are done. Put Then z is in E but not in any of 's. Indeed, if z is in for some , then is in , a contradiction. Suppose z is in . Then is in . If n is 2, we are done. If n > 2, then, since is a prime ideal, some is in , a contradiction. There is the following variant of prime avoidance due to E. Davis. Proof: We argue by induction on r. Without loss of generality, we can assume there is no inclusion relation between the 's; since otherwise we can use the inductive hypothesis. Also, if for each i, then we are done; thus, without loss of generality, we can assume . By inductive hypothesis, we find a y in J such that . If is not in , we are done. Otherwise, note that (since ) and since is a prime ideal, we have: Hence, we can choose in that is not in . Then, since , the element has the required property. Let A be a Noetherian ring, I an ideal generated by n elements and M a finite A-module such that .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.