Optical pumping is a process in which light is used to raise (or "pump") electrons from a lower energy level in an atom or molecule to a higher one. It is commonly used in laser construction to pump the active laser medium so as to achieve population inversion. The technique was developed by the 1966 Nobel Prize winner Alfred Kastler in the early 1950s. Optical pumping is also used to cyclically pump electrons bound within an atom or molecule to a well-defined quantum state. For the simplest case of coherent two-level optical pumping of an atomic species containing a single outer-shell electron, this means that the electron is coherently pumped to a single hyperfine sublevel (labeled ), which is defined by the polarization of the pump laser along with the quantum selection rules. Upon optical pumping, the atom is said to be oriented in a specific sublevel, however, due to the cyclic nature of optical pumping, the bound electron will actually be undergoing repeated excitation and decay between the upper and lower state sublevels. The frequency and polarization of the pump laser determine the sublevel in which the atom is oriented. In practice, completely coherent optical pumping may not occur due to power-broadening of the linewidth of a transition and undesirable effects such as hyperfine structure trapping and radiation trapping. Therefore the orientation of the atom depends more generally on the frequency, intensity, polarization, and spectral bandwidth of the laser as well as the linewidth and transition probability of the absorbing transition. An optical pumping experiment is commonly found in physics undergraduate laboratories, using rubidium gas isotopes and displaying the ability of radiofrequency (MHz) electromagnetic radiation to effectively pump and unpump these isotopes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
MICRO-321(a): Optical engineering (for MT)
Ce cours présente différentes facettes de l'optique moderne et met à la fois l'accent sur des bases rigoureuses et des applications pratiques. Le cours inclut une partie théorique avec un cours et des
MICRO-321(b): Optical engineering (for EL)
Ce cours présente différentes facettes de l'optique moderne et met à la fois l'accent sur des bases rigoureuses et des applications pratiques. Le inclut une partie théorique avec un cours ainsi que de
PHYS-318: Optics II
Introduction aux concepts de base de l'optique classique et moderne. Les étudiants acquièrent des outils pour comprendre et analyser les phénomènes optiques et pour pouvoir concevoir des systèmes opti
Show more
Related lectures (32)
Optical Pumping Schemes: Levels and Amplification
Explores optical pumping schemes for population inversion in laser systems, comparing 3-level and 4-level systems' efficiency.
Rare Earth Doped Fiber Amplifiers: Erbium Operation
Explores rare earth doped fiber amplifiers, focusing on erbium operation at 1550 nm wavelength and the factors influencing gain spectrum.
Laser Types and Properties
Explores laser principles, properties, types, and dangers of high brightness beams, as well as resonator configurations and pumping methods.
Show more
Related publications (71)

Terahertz emission from diamond nitrogen-vacancy centers

László Forró, Ferenc Simon, Bence Gábor Márkus, Sándor Kollarics

Coherent light sources emitting in the terahertz range are highly sought after for fundamental research and applications. Terahertz lasers rely on achieving population inversion. We demonstrate the generation of terahertz radiation using nitrogen-vacancy c ...
Amer Assoc Advancement Science2024

Terahertz waveform synthesis in integrated thin-film lithium niobate platform

Ileana-Cristina Benea-Chelmus, Jérôme Faist, Francesca Fabiana Settembrini

Bridging the "terahertz gap" relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom ...
Berlin2023

Photonic assembly tunable via the pockels effect and method for use in frequency-modulated lidar

Tobias Kippenberg, Viacheslav Snigirev, Grigorii Likhachev

A photonic assembly, a laser setup comprising said photonic assembly and a method for performing frequency-modulated continuous-wave light detection and ranging using said laser setup are disclosed. The photonic assembly (1) comprises an active photonic ch ...
2023
Show more
Related concepts (3)
Population inversion
In physics, specifically statistical mechanics, a population inversion occurs while a system (such as a group of atoms or molecules) exists in a state in which more members of the system are in higher, excited states than in lower, unexcited energy states. It is called an "inversion" because in many familiar and commonly encountered physical systems, this is not possible. This concept is of fundamental importance in laser science because the production of a population inversion is a necessary step in the workings of a standard laser.
Laser pumping
Laser pumping is the act of energy transfer from an external source into the gain medium of a laser. The energy is absorbed in the medium, producing excited states in its atoms. When the number of particles in one excited state exceeds the number of particles in the ground state or a less-excited state, population inversion is achieved. In this condition, the mechanism of stimulated emission can take place and the medium can act as a laser or an optical amplifier. The pump power must be higher than the lasing threshold of the laser.
Rubidium
Rubidium is the chemical element with the symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have a density higher than water. On Earth, natural rubidium comprises two isotopes: 72% is a stable isotope 85Rb, and 28% is slightly radioactive 87Rb, with a half-life of 48.8 billion years—more than three times as long as the estimated age of the universe.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.