In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non-circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of relevance to proof theory still have computable ordinal notations (see ordinal analysis). However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not (for reasons somewhat analogous to the unsolvability of the halting problem); various more-concrete ways of defining ordinals that definitely have notations are available.
Since there are only countably many notations, all ordinals with notations are exhausted well below the first uncountable ordinal ω1; their supremum is called Church–Kleene ω1 or ω (not to be confused with the first uncountable ordinal, ω1), described below. Ordinal numbers below ω are the recursive ordinals (see below). Countable ordinals larger than this may still be defined, but do not have notations.
Due to the focus on countable ordinals, ordinal arithmetic is used throughout, except where otherwise noted. The ordinals described here are not as large as the ones described in large cardinals, but they are large among those that have constructive notations (descriptions). Larger and larger ordinals can be defined, but they become more and more difficult to describe.
Recursive ordinal
Ordinal notation
Recursive ordinals (or computable ordinals) are certain countable ordinals: loosely speaking those represented by a computable function. There are several equivalent definitions of this: the simplest is to say that a computable ordinal is the order-type of some recursive (i.e., computable) well-ordering of the natural numbers; so, essentially, an ordinal is recursive when we can present the set of smaller ordinals in such a way that a computer (Turing machine, say) can manipulate them (and, essentially, compare them).
A different definition uses Kleene's system of ordinal notations.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
In proof theory, ordinal analysis assigns ordinals (often large countable ordinals) to mathematical theories as a measure of their strength. If theories have the same proof-theoretic ordinal they are often equiconsistent, and if one theory has a larger proof-theoretic ordinal than another it can often prove the consistency of the second theory. The field of ordinal analysis was formed when Gerhard Gentzen in 1934 used cut elimination to prove, in modern terms, that the proof-theoretic ordinal of Peano arithmetic is ε0.
In mathematical logic, Goodstein's theorem is a statement about the natural numbers, proved by Reuben Goodstein in 1944, which states that every Goodstein sequence eventually terminates at 0. Laurence Kirby and Jeff Paris showed that it is unprovable in Peano arithmetic (but it can be proven in stronger systems, such as second-order arithmetic). This was the third example of a true statement that is unprovable in Peano arithmetic, after the examples provided by Gödel's incompleteness theorem and Gerhard Gentzen's 1943 direct proof of the unprovability of ε0-induction in Peano arithmetic.
Gentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction (i.e. are "consistent"), as long as a certain other system used in the proof does not contain any contradictions either. This other system, today called "primitive recursive arithmetic with the additional principle of quantifier-free transfinite induction up to the ordinal ε0", is neither weaker nor stronger than the system of Peano axioms.
Related lectures (8)
The objective of this thesis is to develop efficient numerical schemes to successfully tackle problems arising from the study of groundwater flows in a porous saturated medium; we deal therefore with partial differential equations(PDE) having random coeffi ...
EPFL2016
Two channels are said to be equivalent if they are degraded from each other. The space of equivalent channels with input alphabet X and output alphabet Y can be naturally endowed with the quotient of the Euclidean topology by the equivalence relation. We s ...
2017
As Avez showed (in 1970), the fundamental group of a compact Riemannian manifold of nonpositive sectional curvature has exponential growth if and only if it is not flat. After several generalizations from Gromov, Zimmer, Anderson, Burger and Shroeder, the ...