The phenylpropanoids are a diverse family of organic compounds that are synthesized by plants from the amino acids phenylalanine and tyrosine. Their name is derived from the six-carbon, aromatic phenyl group and the three-carbon propene tail of coumaric acid, which is the central intermediate in phenylpropanoid biosynthesis. From 4-coumaroyl-CoA emanates the biosynthesis of myriad natural products including lignols (precursors to lignin and lignocellulose), flavonoids, isoflavonoids, coumarins, aurones, stilbenes, catechin, and phenylpropanoids. The coumaroyl component is produced from cinnamic acid.
Phenylpropanoids are found throughout the plant kingdom, where they serve as essential components of a number of structural polymers, provide protection from ultraviolet light, defend against herbivores and pathogens, and also mediate plant-pollinator interactions as floral pigments and scent compounds.
Phenylalanine is first converted to cinnamic acid by the action of the enzyme phenylalanine ammonia-lyase (PAL). Some plants, mainly monocotyledonous, use tyrosine to synthesize p-coumaric acid by the action of the bifunctional enzyme Phenylalanine/tyrosine ammonia-lyase (PTAL). A series of enzymatic hydroxylations and methylations leads to coumaric acid, caffeic acid, ferulic acid, 5-hydroxyferulic acid, and sinapic acid. Conversion of these acids to their corresponding esters produces some of the volatile components of herb and flower fragrances, which serve many functions such as attracting pollinators. Ethyl cinnamate is a common example.
Reduction of the carboxylic acid functional groups in the cinnamic acids provides the corresponding aldehydes, such as cinnamaldehyde. Further reduction provides monolignols including coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, which vary only in their degree of methoxylation. The monolignols are monomers that are polymerized to generate various forms of lignin and suberin, which are used as a structural component of plant cell walls.