Classical control theory is a branch of control theory that deals with the behavior of dynamical systems with inputs, and how their behavior is modified by feedback, using the Laplace transform as a basic tool to model such systems.
The usual objective of control theory is to control a system, often called the plant, so its output follows a desired control signal, called the reference, which may be a fixed or changing value. To do this a controller is designed, which monitors the output and compares it with the reference. The difference between actual and desired output, called the error signal, is applied as feedback to the input of the system, to bring the actual output closer to the reference.
Classical control theory deals with linear time-invariant (LTI) single-input single-output (SISO) systems. The Laplace transform of the input and output signal of such systems can be calculated. The transfer function relates the Laplace transform of the input and the output.
To overcome the limitations of the open-loop controller, classical control theory introduces feedback. A closed-loop controller uses feedback to control states or outputs of a dynamical system. Its name comes from the information path in the system: process inputs (e.g., voltage applied to an electric motor) have an effect on the process outputs (e.g., speed or torque of the motor), which is measured with sensors and processed by the controller; the result (the control signal) is "fed back" as input to the process, closing the loop.
Closed-loop controllers have the following advantages over open-loop controllers:
disturbance rejection (such as hills in a cruise control)
guaranteed performance even with model uncertainties, when the model structure does not match perfectly the real process and the model parameters are not exact
unstable processes can be stabilized
reduced sensitivity to parameter variations
improved reference tracking performance
In some systems, closed-loop and open-loop control are used simultaneously.