In mathematics, the curve-shortening flow is a process that modifies a smooth curve in the Euclidean plane by moving its points perpendicularly to the curve at a speed proportional to the curvature. The curve-shortening flow is an example of a geometric flow, and is the one-dimensional case of the mean curvature flow. Other names for the same process include the Euclidean shortening flow, geometric heat flow, and arc length evolution.
As the points of any smooth simple closed curve move in this way, the curve remains simple and smooth. It loses area at a constant rate, and its perimeter decreases as quickly as possible for any continuous curve evolution. If the curve is non-convex, its total absolute curvature decreases monotonically, until it becomes convex. Once convex, the isoperimetric ratio of the curve decreases as the curve converges to a circular shape, before collapsing to a single point of singularity. If two disjoint simple smooth closed curves evolve, they remain disjoint until one of them collapses to a point.
The circle is the only simple closed curve that maintains its shape under the curve-shortening flow, but some curves that cross themselves or have infinite length keep their shape, including the grim reaper curve, an infinite curve that translates upwards, and spirals that rotate while remaining the same size and shape.
An approximation to the curve-shortening flow can be computed numerically, by approximating the curve as a polygon and using the finite difference method to calculate the motion of each polygon vertex. Alternative methods include computing a convolution of polygon vertices and then resampling vertices on the resulting curve, or repeatedly applying a median filter to a whose black and white pixels represent the inside and outside of the curve.
The curve-shortening flow was originally studied as a model for annealing of metal sheets. Later, it was applied in image analysis to give a multi-scale representation of shapes. It can also model reaction–diffusion systems, and the behavior of cellular automata.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In the field of differential geometry in mathematics, mean curvature flow is an example of a geometric flow of hypersurfaces in a Riemannian manifold (for example, smooth surfaces in 3-dimensional Euclidean space). Intuitively, a family of surfaces evolves under mean curvature flow if the normal component of the velocity of which a point on the surface moves is given by the mean curvature of the surface. For example, a round sphere evolves under mean curvature flow by shrinking inward uniformly (since the mean curvature vector of a sphere points inward).
We consider the Allen-Cahn equation ?(t)u - ?u = u - u(3) with a rapidly mixing Gaussian field as initial condition. We show that provided that the amplitude of the initial condition is not too large, the equation generates fronts described by nodal sets o ...
SPRINGER HEIDELBERG2023
We consider the directed mean curvature flow on the plane in a weak Gaussian random environment. We prove that, when started from a sufficiently flat initial condition, a rescaled and recentred solution converges to the Cole-Hopf solution of the KPZ equati ...
Seawater intrusion in island aquifers was considered analytically, specifically for annulus segment aquifers (ASAs), i.e., aquifers that (in plan) have the shape of an annulus segment. Based on the Ghijben–Herzberg and hillslope-storage Boussinesq equation ...