Concept

Derivative of the exponential map

In the theory of Lie groups, the exponential map is a map from the Lie algebra g of a Lie group G into G. In case G is a matrix Lie group, the exponential map reduces to the matrix exponential. The exponential map, denoted exp:g → G, is analytic and has as such a derivative d/dtexp(X(t)):Tg → TG, where X(t) is a C1 path in the Lie algebra, and a closely related differential dexp:Tg → TG. The formula for dexp was first proved by Friedrich Schur (1891). It was later elaborated by Henri Poincaré (1899) in the context of the problem of expressing Lie group multiplication using Lie algebraic terms. It is also sometimes known as Duhamel's formula. The formula is important both in pure and applied mathematics. It enters into proofs of theorems such as the Baker–Campbell–Hausdorff formula, and it is used frequently in physics for example in quantum field theory, as in the Magnus expansion in perturbation theory, and in lattice gauge theory. Throughout, the notations exp(X) and eX will be used interchangeably to denote the exponential given an argument, except when, where as noted, the notations have dedicated distinct meanings. The calculus-style notation is preferred here for better readability in equations. On the other hand, the exp-style is sometimes more convenient for inline equations, and is necessary on the rare occasions when there is a real distinction to be made. The derivative of the exponential map is given by Explanation To compute the differential dexp of exp at X, dexpX: TgX → TGexp(X), the standard recipe is employed. With Z(t) = X + tY the result follows immediately from . In particular, dexp0:Tg0 → TGexp(0) = TGe is the identity because TgX ≃ g (since g is a vector space) and TGe ≃ g. The proof given below assumes a matrix Lie group. This means that the exponential mapping from the Lie algebra to the matrix Lie group is given by the usual power series, i.e. matrix exponentiation. The conclusion of the proof still holds in the general case, provided each occurrence of exp is correctly interpreted.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.