In computer programming, homoiconicity (from the Greek words homo- meaning "the same" and icon meaning "representation") is a property of some programming languages. A language is homoiconic if a program written in it can be manipulated as data using the language, and thus the program's internal representation can be inferred just by reading the program itself. This property is often summarized by saying that the language treats code as data.
In a homoiconic language, the primary representation of programs is also a data structure in a primitive type of the language itself. This makes metaprogramming easier than in a language without this property: reflection in the language (examining the program's entities at runtime) depends on a single, homogeneous structure, and it does not have to handle several different structures that would appear in a complex syntax. Homoiconic languages typically include full support of syntactic macros, allowing the programmer to express transformations of programs in a concise way.
A commonly cited example is Lisp, which was created to allow for easy list manipulations and where the structure is given by S-expressions that take the form of nested lists, and can be manipulated by other Lisp code. Other examples are the programming languages Clojure (a contemporary dialect of Lisp), Rebol (also its successor Red), Refal, Prolog, and possibly Julia (see the section “Implementation methods” for more details).
The term first appeared in connection with the TRAC programming language, developed by Calvin Mooers:
One of the main design goals was that the input script of TRAC (what is typed in by the user) should be identical to the text which guides the internal action of the TRAC processor. In other words, TRAC procedures should be stored in memory as a string of characters exactly as the user typed them at the keyboard. If the TRAC procedures themselves evolve new procedures, these new procedures should also be stated in the same script. The TRAC processor in its action interprets this script as its program.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Understanding of the principles and applications of functional programming, the fundamental models of program
execution, application of fundamental methods of program composition, meta-programming thr
Rebol (ˈrɛbəl ; historically REBOL) is a cross-platform data exchange language and a multi-paradigm dynamic programming language designed by Carl Sassenrath for network communications and distributed computing.
In computing, a meta-circular evaluator (MCE) or meta-circular interpreter (MCI) is an interpreter which defines each feature of the interpreted language using a similar facility of the interpreter's host language. For example, interpreting a lambda application may be implemented using function application. Meta-circular evaluation is most prominent in the context of Lisp. A self-interpreter is a meta-circular interpreter where the interpreted language is nearly identical to the host language; the two terms are often used synonymously.
Extensible programming is a term used in computer science to describe a style of computer programming that focuses on mechanisms to extend the programming language, compiler and runtime environment. Extensible programming languages, supporting this style of programming, were an active area of work in the 1960s, but the movement was marginalized in the 1970s. Extensible programming has become a topic of renewed interest in the 21st century. The first paper usually associated with the extensible programming language movement is M.
Over the past decade, the Scala community has shown great interest in using type-level programming to obtain additional type safety.Unfortunately, the lack of support from the Scala compiler has been a barrier to the adoption of that technique, notably due ...