Gene knockdown is an experimental technique by which the expression of one or more of an organism's genes is reduced. The reduction can occur either through genetic modification or by treatment with a reagent such as a short DNA or RNA oligonucleotide that has a sequence complementary to either gene or an mRNA transcript. If a DNA of an organism is genetically modified, the resulting organism is called a "knockdown organism." If the change in gene expression is caused by an oligonucleotide binding to an mRNA or temporarily binding to a gene, this leads to a temporary change in gene expression that does not modify the chromosomal DNA, and the result is referred to as a "transient knockdown". In a transient knockdown, the binding of this oligonucleotide to the active gene or its transcripts causes decreased expression through a variety of processes. Binding can occur either through the blocking of transcription (in the case of gene-binding), the degradation of the mRNA transcript (e.g. by small interfering RNA (siRNA)) or RNase-H dependent antisense, or through the blocking of either mRNA translation, pre-mRNA splicing sites, or nuclease cleavage sites used for maturation of other functional RNAs, including miRNA (e.g. by morpholino oligos or other RNase-H independent antisense). The most direct use of transient knockdowns is for learning about a gene that has been sequenced, but has an unknown or incompletely known function. This experimental approach is known as reverse genetics. Researchers draw inferences from how the knockdown differs from individuals in which the gene of interest is operational. Transient knockdowns are often used in developmental biology because oligos can be injected into single-celled zygotes and will be present in the daughter cells of the injected cell through embryonic development. The term gene knockdown first appeared in the literature in 1994 RNA interference (RNAi) is a means of silencing genes by way of mRNA degradation. Gene knockdown by this method is achieved by introducing small double-stranded interfering RNAs (siRNA) into the cytoplasm.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (10)
Identifying Drug Targets: Safety and Efficacy
Delves into identifying drug targets, ensuring efficacy, and maintaining safety in medical chemistry, covering genetic tests, chirality, stereochemistry, drug resistance, and drug-likeness rules.
Identifying Correct Target in Medical Chemistry
Explores target identification, efficacy, and safety in medical chemistry, emphasizing the importance of on-target specificity and drug design.
Chemical Biology: High-Throughput and High-Content Screening
Covers Chemical Biology, high-throughput screening, RNA interference, CRISPR-Cas9, and organoid differentiation for drug discovery.
Show more
Related publications (25)

Hemagglutinin of Influenza A, but not of Influenza B and C viruses is acylated by ZDHHC2, 8, 15 and 20

Françoise Gisou van der Goot Grunberg, Laurence Gouzi Abrami, Mohamed Adbelalim Gadalla

Hemagglutinin (HA), a glycoprotein of Influenza A viruses and its proton channel M2 are site-specifically modified with fatty acids. Whereas two cysteines in the short cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to one c ...
PORTLAND PRESS LTD2020

Computational design of anti-CRISPR proteins with improved inhibition potency

Bruno Emanuel Ferreira De Sousa Correia, Sandrine Madeleine Suzanne Georgeon, Zander Harteveld, Andreas Scheck, Wei Sun, Stéphane Rosset, Julius Valten Upmeier Zu Belzen, Yujia Wang

Anti-CRISPR (Acr) proteins are powerful tools to control CRISPR-Cas technologies. However, the available Acr repertoire is limited to naturally occurring variants. Here, we applied structure-based design on AcrIIC1, a broad-spectrum CRISPR-Cas9 inhibitor, ...
NATURE PUBLISHING GROUP2020

Machine learning-based tools to model and to remove the off-target effect

François Fleuret

A RNA interference, also called a gene knockdown, is a biological technique which consists of inhibiting a targeted gene in a cell. By doing so, one can identify statistical dependencies between a gene and a cell phenotype. However, during such a gene inhi ...
Springer2017
Show more
Related concepts (5)
CRISPR
CRISPR (ˈkrɪspər) (an acronym for clustered regularly interspaced short palindromic repeats) is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. These sequences are derived from DNA fragments of bacteriophages that had previously infected the prokaryote. They are used to detect and destroy DNA from similar bacteriophages during subsequent infections. Hence these sequences play a key role in the antiviral (i.e. anti-phage) defense system of prokaryotes and provide a form of acquired immunity.
RNA interference
RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression by double-stranded RNA, through translational or transcriptional repression. Historically, RNAi was known by other names, including co-suppression, post-transcriptional gene silencing (PTGS), and quelling. The detailed study of each of these seemingly different processes elucidated that the identity of these phenomena were all actually RNAi. Andrew Fire and Craig C.
Glossary of genetics (0–L)
This glossary of genetics is a list of definitions of terms and concepts commonly used in the study of genetics and related disciplines in biology, including molecular biology, cell biology, and evolutionary biology. It is split across two articles: This page, Glossary of genetics (0–L), lists terms beginning with numbers and those beginning with the letters A through L. Glossary of genetics (M–Z) lists terms beginning with the letters M through Z.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.