Concept

Kepler-442b

Summary
Kepler-442b (also known by its Kepler object of interest designation KOI-4742.01) is a confirmed near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the K-type main-sequence star Kepler-442, about from Earth in the constellation of Lyra. The planet orbits its host star at a distance of about with an orbital period of roughly 112.3 days. It has a mass of around 2.3 and has a radius of about 1.34 times that of Earth. It is one of the more promising candidates for potential habitability, as its parent star is at least 40% less massive than the Sun – thus, it can have a lifespan of about 30 billion years. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which it measures the dimming effect that a planet causes as it crosses in front of its star. NASA announced the confirmation of the exoplanet on 6 January 2015. Kepler-442b is a super-Earth, an exoplanet with a mass and radius bigger than Earth's but smaller than the ice giants Uranus and Neptune. It has an equilibrium temperature of . It has a radius of 1.34 . Because of its radius, it is likely to be a rocky planet with a solid surface. The mass of the exoplanet is estimated to be 2.36 . The surface gravity on Kepler-442b would be 30% stronger than Earth, assuming a rocky composition similar to that of Earth. Kepler-442 The planet orbits a (K-type) star named Kepler-442. The star has a mass of 0.61 and a radius of 0.60 . It has a temperature of and is around 2.9 billion years old, with some uncertainty. In comparison, our Sun is 4.6 billion years old and has a temperature of . The star is somewhat metal-poor, with a metallicity (Fe/H) of −0.37, or 43% of the solar amount. Its luminosity () is 12% that of the Sun. The star's apparent magnitude, or how bright it appears from Earth's perspective, is 14.76. Therefore, it is too dim to be seen with the naked eye. Kepler-442b orbits its host star with an orbital period of 112 days. It has an orbital radius of about (slightly larger than the distance of Mercury from the Sun, which is approximately ).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.