Summary
Gait analysis is the systematic study of animal locomotion, more specifically the study of human motion, using the eye and the brain of observers, augmented by instrumentation for measuring body movements, body mechanics, and the activity of the muscles. Gait analysis is used to assess and treat individuals with conditions affecting their ability to walk. It is also commonly used in sports biomechanics to help athletes run more efficiently and to identify posture-related or movement-related problems in people with injuries. The study encompasses quantification (introduction and analysis of measurable parameters of gaits), as well as interpretation, i.e. drawing various conclusions about the animal (health, age, size, weight, speed etc.) from its gait pattern. The pioneers of scientific gait analysis were Aristotle in De Motu Animalium (On the Gait of Animals) and much later in 1680, Giovanni Alfonso Borelli also called De Motu Animalium (I et II). In the 1890s, the German anatomist Christian Wilhelm Braune and Otto Fischer published a series of papers on the biomechanics of human gait under loaded and unloaded conditions. With the development of photography and cinematography, it became possible to capture image sequences that reveal details of human and animal locomotion that were not noticeable by watching the movement with the naked eye. Eadweard Muybridge and Étienne-Jules Marey were pioneers of these developments in the early 1900s. For example, serial photography first revealed the detailed sequence of the horse "gallop", which was usually misrepresented in paintings made prior to this discovery. Although much early research was done using film cameras, the widespread application of gait analysis to humans with pathological conditions such as cerebral palsy, Parkinson's disease, and neuromuscular disorders, began in the 1970s with the availability of video camera systems that could produce detailed studies of individual patients within realistic cost and time constraints.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (76)
Related concepts (2)
Biomechanics
Biomechanics is the study of the structure, function and motion of the mechanical aspects of biological systems, at any level from whole organisms to organs, cells and cell organelles, using the methods of mechanics. Biomechanics is a branch of biophysics. In 2022, computational mechanics goes far beyond pure mechanics, and involves other physical actions: chemistry, heat and mass transfer, electric and magnetic stimuli and many others.
Gait analysis
Gait analysis is the systematic study of animal locomotion, more specifically the study of human motion, using the eye and the brain of observers, augmented by instrumentation for measuring body movements, body mechanics, and the activity of the muscles. Gait analysis is used to assess and treat individuals with conditions affecting their ability to walk. It is also commonly used in sports biomechanics to help athletes run more efficiently and to identify posture-related or movement-related problems in people with injuries.
Related courses (2)
BIOENG-404: Analysis and modelling of locomotion
The lecture presents an overview of the state of the art in the analysis and modeling of human locomotion and the underlying motor circuits. Multiple aspects are considered including neurophysiology,
BIO-687: Engineering of musculoskeletal system and rehabilitation
This course presents today research questions and methods associated to the musculoskeletal system, its pathologies, and treatment.
Related lectures (10)
Gait Kinematics: Frames in Biomechanics
Explores various frames in biomechanical analysis, highlighting their significance in defining body movements accurately.
Neuromechanics of Terrestrial Locomotion
Explores computational modeling of terrestrial locomotion, focusing on neural circuits, biomechanics, and gait optimization.
Biomechanics: Force-Length Relationship
Discusses the force-length relationship analysis in biomechanics and the extraction of biomechanical parameters.
Show more