In cryptography, a key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value such as a master key, a password, or a passphrase using a pseudorandom function (which typically uses a cryptographic hash function or block cipher). KDFs can be used to stretch keys into longer keys or to obtain keys of a required format, such as converting a group element that is the result of a Diffie–Hellman key exchange into a symmetric key for use with AES. Keyed cryptographic hash functions are popular examples of pseudorandom functions used for key derivation. The first deliberately slow (key stretching) password-based key derivation function was called "crypt" (or "crypt(3)" after its man page), and was invented by Robert Morris in 1978. It would encrypt a constant (zero), using the first 8 characters of the user's password as the key, by performing 25 iterations of a modified DES encryption algorithm (in which a 12-bit number read from the real-time computer clock is used to perturb the calculations). The resulting 64-bit number is encoded as 11 printable characters and then stored in the Unix password file. While it was a great advance at the time, increases in processor speeds since the PDP-11 era have made brute-force attacks against crypt feasible, and advances in storage have rendered the 12-bit salt inadequate. The crypt function's design also limits the user password to 8 characters, which limits the keyspace and makes strong passphrases impossible. Although high throughput is a desirable property in general-purpose hash functions, the opposite is true in password security applications in which defending against brute-force cracking is a primary concern. The growing use of massively-parallel hardware such as GPUs, FPGAs, and even ASICs for brute-force cracking has made the selection of a suitable algorithms even more critical because the good algorithm should not only enforce a certain amount of computational cost not only on CPUs, but also resist the cost/performance advantages of modern massively-parallel platforms for such tasks.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (15)
COM-401: Cryptography and security
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
ChE-430: Nanomaterials for chemical engineering application
This course aims at understanding classical and non-classical nucleation theory, at reviewing different techniques for the synthesis of nanomaterials (mainly nanoparticles and thin films) and at learn
MATH-489: Number theory II.c - Cryptography
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
Show more
Related publications (107)
Related concepts (16)
Key stretching
In cryptography, key stretching techniques are used to make a possibly weak key, typically a password or passphrase, more secure against a brute-force attack by increasing the resources (time and possibly space) it takes to test each possible key. Passwords or passphrases created by humans are often short or predictable enough to allow password cracking, and key stretching is intended to make such attacks more difficult by complicating a basic step of trying a single password candidate.
SHA-2
SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher. SHA-2 includes significant changes from its predecessor, SHA-1. The SHA-2 family consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512 bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.
Dictionary attack
In cryptanalysis and computer security, a dictionary attack is an attack using a restricted subset of a keyspace to defeat a cipher or authentication mechanism by trying to determine its decryption key or passphrase, sometimes trying thousands or millions of likely possibilities often obtained from lists of past security breaches. A dictionary attack is based on trying all the strings in a pre-arranged listing.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.