Concept

Q (software)

Q is a computer software package for molecular dynamics (MD) simulation (current release: Q6). Unlike other MD codes, it has specialized since its conception (Marelius et al. 1998) on three specific types of free energy calculations. These calculations are based on the methods: empirical valence bond (EVB), free energy perturbation (FEP), and linear interaction energy (LIE), as well as, more recently, also path integral calculations using the bisection quantum classical path (BQCP) approach. The methods in which the program specializes can return quantitative calculations of the energy balance which occurs in proteins and nucleic acids. It can provide insight into key problems in biochemistry such as, energetic details on parts of the translation mechanism in mitochondrial ribosomes (Lind et al. 2013), or details in enzymatic reactions (Mones et al. 2013), among others. The program is similar to GROMACS in being force-field agnostic, meaning that it provides no force-field, but can rather use common force-fields such as CHARMM, AMBER, OPLS, and GROMOS. The software provides one main utility for molecular dynamics called qdyn, and various subprograms such as qprep (to prepare input files from X-ray coordinates), qfep (to process MD calculations for FEP), and others. The general command to run Q is very similar to that of other MD programs and its syntax for a dynamics run is as follows: qdyn inputfile.inp > outputfile.out qdyn – This is the name of the main program which runs dynamics. inputfile.inp – This is a text file which specifies all options to the program such as how long are the simulation and the time-steps, what temperature is being simulated, and many others. filename.out – This is the output file which gives a detailed account of the energetic results. The verbosity of the information in the output file is controlled in the input file. The output places emphasis on reporting on nonbonded interactions such as van der Waals force and electrostatics interactions in detail on the solvent, the solution, and the interactions among them.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (2)
Related concepts (2)
Molecular design software
Molecular design software is notable software for molecular modeling, that provides special support for developing molecular models de novo. In contrast to the usual molecular modeling programs, such as for molecular dynamics and quantum chemistry, such software directly supports the aspects related to constructing molecular models, including: Molecular graphics interactive molecular drawing and conformational editing building polymeric molecules, crystals, and solvated systems partial charges development g
Molecular dynamics
Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the system. In the most common version, the trajectories of atoms and molecules are determined by numerically solving Newton's equations of motion for a system of interacting particles, where forces between the particles and their potential energies are often calculated using interatomic potentials or molecular mechanical force fields.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.