Summary
In cryptography, a random oracle is an oracle (a theoretical black box) that responds to every unique query with a (truly) random response chosen uniformly from its output domain. If a query is repeated, it responds the same way every time that query is submitted. Stated differently, a random oracle is a mathematical function chosen uniformly at random, that is, a function mapping each possible query to a (fixed) random response from its output domain. Random oracles as a mathematical abstraction were first used in rigorous cryptographic proofs in the 1993 publication by Mihir Bellare and Phillip Rogaway (1993). They are typically used when the proof cannot be carried out using weaker assumptions on the cryptographic hash function. A system that is proven secure when every hash function is replaced by a random oracle is described as being secure in the random oracle model, as opposed to secure in the standard model of cryptography. Random oracles are typically used as an idealised replacement for cryptographic hash functions in schemes where strong randomness assumptions are needed of the hash function's output. Such a proof often shows that a system or a protocol is secure by showing that an attacker must require impossible behavior from the oracle, or solve some mathematical problem believed hard in order to break it. However, it only proves such properties in the random oracle model, making sure no major design flaws are present. It is in general not true that such a proof implies the same properties in the standard model. Still, a proof in the random oracle model is considered better than no formal security proof at all. Not all uses of cryptographic hash functions require random oracles: schemes that require only one or more properties having a definition in the standard model (such as collision resistance, , , etc.) can often be proven secure in the standard model (e.g., the Cramer–Shoup cryptosystem).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.