Concept

Reflexive sheaf

In algebraic geometry, a reflexive sheaf is a coherent sheaf that is isomorphic to its second dual (as a sheaf of modules) via the canonical map. The second dual of a coherent sheaf is called the reflexive hull of the sheaf. A basic example of a reflexive sheaf is a locally free sheaf of finite rank and, in practice, a reflexive sheaf is thought of as a kind of a vector bundle modulo some singularity. The notion is important both in scheme theory and complex algebraic geometry. For the theory of reflexive sheaves, one works over an integral noetherian scheme. A reflexive sheaf is torsion-free. The dual of a coherent sheaf is reflexive. Usually, the product of reflexive sheaves is defined as the reflexive hull of their tensor products (so the result is reflexive.) A coherent sheaf F is said to be "normal" in the sense of Barth if the restriction is bijective for every open subset U and a closed subset Y of U of codimension at least 2. With this terminology, a coherent sheaf on an integral normal scheme is reflexive if and only if it is torsion-free and normal in the sense of Barth. A reflexive sheaf of rank one on an integral locally factorial scheme is invertible. A divisorial sheaf on a scheme X is a rank-one reflexive sheaf that is locally free at the generic points of the conductor DX of X. For example, a canonical sheaf (dualizing sheaf) on a normal projective variety is a divisorial sheaf.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.