Concept

Indeterminate equation

In mathematics, particularly in algebra, an indeterminate equation is an equation for which there is more than one solution. For example, the equation is a simple indeterminate equation, as is . Indeterminate equations cannot be solved uniquely. In fact, in some cases it might even have infinitely many solutions. Some of the prominent examples of indeterminate equations include: Univariate polynomial equation: which has multiple solutions for the variable in the complex plane—unless it can be rewritten in the form . Non-degenerate conic equation: where at least one of the given parameters , , and is non-zero, and and are real variables. Pell's equation: where is a given integer that is not a square number, and in which the variables and are required to be integers. The equation of Pythagorean triples: in which the variables , , and are required to be positive integers.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.