MATH-341: Linear modelsRegression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
DH-406: Machine learning for DHThis course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
MATH-449: BiostatisticsThis course covers statistical methods that are widely used in medicine and biology. A key topic is the analysis of longitudinal data: that is, methods to evaluate exposures, effects and outcomes that
PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
EE-613: Machine Learning for EngineersThe objective of this course is to give an overview of machine learning techniques used for real-world applications, and to teach how to implement and use them in practice. Laboratories will be done i
EE-607: Advanced Methods for Model IdentificationThis course introduces the principles of model identification for non-linear dynamic systems, and provides a set of possible solution methods that are thoroughly characterized in terms of modelling as