Concept

Polar regions of Earth

Summary
The polar regions, also called the frigid zones or polar zones, of Earth are Earth's polar ice caps, the regions of the planet that surround its geographical poles (the North and South Poles), lying within the polar circles. These high latitudes are dominated by floating sea ice covering much of the Arctic Ocean in the north, and by the Antarctic ice sheet on the continent of Antarctica and the Southern Ocean in the south. The Arctic has various definitions, including the region north of the Arctic Circle (currently Epoch 2010 at 66°33'44" N), or just the region north of 60° north latitude, or the region from the North Pole south to the timberline. The Antarctic is usually defined simply as south of 60° south latitude, or the continent of Antarctica. The 1959 Antarctic Treaty uses the former definition. The two polar regions are distinguished from the other two climatic and biometric belts of Earth, a tropics belt near the equator, and two middle latitude regions located between the tropics and polar regions. Polar climate Polar regions receive less intense solar radiation than the other parts of Earth because the Sun's energy arrives at an oblique angle, spreading over a larger area, being less concentrated, and also travels a longer distance through the Earth's atmosphere in which it may be absorbed, scattered or reflected, which is the same thing that causes winters to be colder than the rest of the year except in tropical regions. The axial tilt of the Earth has the most effect on climate of the polar regions due to its latitude. However, since the polar regions are the farthest from the equator, they receive the weakest solar radiation and are therefore generally frigid year round due to the earth's axial tilt of 23.5° not being enough to create a high maximum midday declination to sufficiently compensate the Sun's rays for the high latitude even in summer, except for relatively brief periods in peripheral areas near the polar circles. The large amount of ice and snow also reflects and weakens of what weak sunlight the polar regions receive further, contributing to the cold.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.