Summary
A flux tube is a generally tube-like (cylindrical) region of space containing a magnetic field, B, such that the cylindrical sides of the tube are everywhere parallel to the magnetic field lines. It is a graphical visual aid for visualizing a magnetic field. Since no magnetic flux passes through the sides of the tube, the flux through any cross section of the tube is equal, and the flux entering the tube at one end is equal to the flux leaving the tube at the other. Both the cross-sectional area of the tube and the magnetic field strength may vary along the length of the tube, but the magnetic flux inside is always constant. As used in astrophysics, a flux tube generally means an area of space through which a strong magnetic field passes, in which the behavior of matter (usually ionized gas or plasma) is strongly influenced by the field. They are commonly found around stars, including the Sun, which has many flux tubes from tens to hundreds of kilometers in diameter. Sunspots are also associated with larger flux tubes of 2500 km diameter. Some planets also have flux tubes. A well-known example is the flux tube between Jupiter and its moon Io. The flux of a vector field passing through any closed orientable surface is the surface integral of the field over the surface. For example, for a vector field consisting of the velocity of a volume of liquid in motion, and an imaginary surface within the liquid, the flux is the volume of liquid passing through the surface per unit time. A flux tube can be defined passing through any closed, orientable surface in a vector field , as the set of all points on the field lines passing through the boundary of . This set forms a hollow tube. The tube follows the field lines, possibly turning, twisting, and changing its cross sectional size and shape as the field lines converge or diverge. Since no field lines pass through the tube walls there is no flux through the walls of the tube, so all the field lines enter and leave through the end surfaces.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.