Economizers (US and Oxford spelling), or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, power plant, heating, refrigeration, ventilating, and air conditioning (HVAC) uses are discussed in this article. In simple terms, an economizer is a heat exchanger. Robert Stirling's innovative contribution to the design of hot air engines of 1816 was what he called the 'Economiser'. Now known as the regenerator, it stored heat from the hot portion of the engine as the air passed to the cold side, and released heat to the cooled air as it returned to the hot side. This innovation improved the efficiency of the Stirling engine enough to make it commercially successful in particular applications, and has since been a component of every air engine that is called a Stirling engine. In boilers, economizers are heat exchange devices that heat fluids, usually water, up to but not normally beyond the boiling point of that fluid. Economizers are so named because they can make use of the enthalpy in fluid streams that are hot, but not hot enough to be used in a boiler, thereby recovering more useful enthalpy and improving the boiler's efficiency. They are a device fitted to a boiler which saves energy by using the exhaust gases from the boiler to preheat the cold water used to fill it (the feed water). Steam boilers use large amounts of energy raising feed water to the boiling temperature, converting the water to steam and sometimes superheating that steam above saturation temperature. Heat transfer efficiency is improved when the highest temperatures near the combustion sources are used for boiling and superheating, while using the residual heat of the cooled combustion gases exhausting from the boiler through an economizer to raise the temperature of feed water entering the steam drum. An indirect contact or direct contact condensing economizer will recover the residual heat from the combustion products.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
ME-459: Heat pump systems
This course aims to study heat pumping cycles and technologies, and equipment, such as compressors (positive displacement and dynamic), heat exchangers, and expansion valves.
Related lectures (15)
Gas Refrigeration Systems
Explores gas refrigeration systems, including Brayton cycles and heat pumps, discussing principles, performance, and optimization approaches.
Real Heat Pump Cycle
Covers the real heat pump cycle, including its typical layout, conditions, representation, compressor efficiency, exergy analysis, and limitations.
Heat Pump Cycles: Efficiency and Improvements
Analyzes real heat pump cycles, focusing on efficiency improvements through two-stage compression cycles and intercooling.
Show more
Related publications (33)
Related concepts (7)
Waste heat
Waste heat is heat that is produced by a machine, or other process that uses energy, as a byproduct of doing work. All such processes give off some waste heat as a fundamental result of the laws of thermodynamics. Waste heat has lower utility (or in thermodynamics lexicon a lower exergy or higher entropy) than the original energy source. Sources of waste heat include all manner of human activities, natural systems, and all organisms, for example, incandescent light bulbs get hot, a refrigerator warms the room air, a building gets hot during peak hours, an internal combustion engine generates high-temperature exhaust gases, and electronic components get warm when in operation.
Thermal power station
A thermal power station is a type of power station in which heat energy is converted to electrical energy. In a steam-generating cycle heat is used to boil water in a large pressure vessel to produce high-pressure steam, which drives a steam turbine connected to an electrical generator. The low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate more high pressure steam. This is known as a Rankine cycle.
Combined cycle power plant
A combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy. On land, when used to make electricity the most common type is called a combined cycle gas turbine (CCGT) plant. The same principle is also used for marine propulsion, where it is called a combined gas and steam (COGAS) plant. Combining two or more thermodynamic cycles improves overall efficiency, which reduces fuel costs.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.