Model-driven engineering (MDE) is a software development methodology that focuses on creating and exploiting domain models, which are conceptual models of all the topics related to a specific problem. Hence, it highlights and aims at abstract representations of the knowledge and activities that govern a particular application domain, rather than the computing (i.e. algorithmic) concepts.
MDE is a subfield of a software design approach referred as round-trip engineering. The scope of the MDE is much wider than that of the Model-driven architecture.
The MDE approach is meant to increase productivity by maximizing compatibility between systems (via reuse of standardized models), simplifying the process of design (via models of recurring design patterns in the application domain), and promoting communication between individuals and teams working on the system (via a standardization of the terminology and the best practices used in the application domain). For instance, in model-driven development, technical artifacts such as source code, documentation, tests, and more are generated algorithmically from a domain model.
A modeling paradigm for MDE is considered effective if its models make sense from the point of view of a user that is familiar with the domain, and if they can serve as a basis for implementing systems. The models are developed through extensive communication among product managers, designers, developers and users of the application domain. As the models approach completion, they enable the development of software and systems.
Some of the better known MDE initiatives are:
The Object Management Group (OMG) initiative Model-Driven Architecture (MDA) which is leveraged by several of their standards such as Meta-Object Facility, XMI, CWM, CORBA, Unified Modeling Language (to be more precise, the OMG currently promotes the use of a subset of UML called fUML together with its action language, ALF, for model-driven architecture; a former approach relied on Executable UML and OCL, instead), and QVT.