Ferritin is a universal intracellular protein that stores iron and releases it in a controlled fashion. The protein is produced by almost all living organisms, including archaea, bacteria, algae, higher plants, and animals. It is the primary intracellular iron-storage protein in both prokaryotes and eukaryotes, keeping iron in a soluble and non-toxic form. In humans, it acts as a buffer against iron deficiency and iron overload.
Ferritin is found in most tissues as a cytosolic protein, but small amounts are secreted into the serum where it functions as an iron carrier. Plasma ferritin is also an indirect marker of the total amount of iron stored in the body; hence, serum ferritin is used as a diagnostic test for iron-deficiency anemia. Aggregated ferritin transforms into a toxic form of iron called hemosiderin.
Ferritin is a globular protein complex consisting of 24 protein subunits forming a hollow nanocage with multiple metal–protein interactions. Ferritin that is not combined with iron is called apoferritin.
Ferritin genes are highly conserved between species. All vertebrate ferritin genes have three introns and four exons. In human ferritin, introns are present between amino acid residues 14 and 15, 34 and 35, and 82 and 83; in addition, there are one to two hundred untranslated bases at either end of the combined exons. The tyrosine residue at amino acid position 27 is thought to be associated with biomineralization.
Ferritin is a hollow globular protein of mass 474 kDa and comprising 24 subunits. Typically it has internal and external diameters of about 8 and 12 nm, respectively. The nature of these subunits varies by class of organism:
In vertebrates, the subunits are of two types, light (L) and heavy (H), which have apparent molecular mass of 19 kDa and 21 kDa, respectively; their sequences are homologous (about 50% identical).
Amphibians have an additional ("M") type of ferritin.
Plants and bacteria have a single ferritin; it most closely resembles the vertebrate H-type.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Iron overload or haemochromatosis (also spelled hemochromatosis in American English) indicates increased total accumulation of iron in the body from any cause and resulting organ damage. The most important causes are hereditary haemochromatosis (HH or HHC), a genetic disorder, and transfusional iron overload, which can result from repeated blood transfusions. Organs most commonly affected by hemochromatosis include the liver, heart, and endocrine glands.
Transferrins are glycoproteins found in vertebrates which bind and consequently mediate the transport of iron (Fe) through blood plasma. They are produced in the liver and contain binding sites for two Fe3+ ions. Human transferrin is encoded by the TF gene and produced as a 76 kDa glycoprotein. Transferrin glycoproteins bind iron tightly, but reversibly. Although iron bound to transferrin is less than 0.1% (4 mg) of total body iron, it forms the most vital iron pool with the highest rate of turnover (25 mg/24 h).
Interleukin 6 (IL-6) is an interleukin that acts as both a pro-inflammatory cytokine and an anti-inflammatory myokine. In humans, it is encoded by the IL6 gene. In addition, osteoblasts secrete IL-6 to stimulate osteoclast formation. Smooth muscle cells in the tunica media of many blood vessels also produce IL-6 as a pro-inflammatory cytokine. IL-6's role as an anti-inflammatory myokine is mediated through its inhibitory effects on TNF-alpha and IL-1 and its activation of IL-1ra and IL-10.
Purpose: This study was designed and conducted to validate the reference values of hematological parameters for healthy adult male and female residents of Kabul city, Afghanistan. Methodology: In this cross-sectional study, the samples were collected accor ...
Albany2024
Background: The gut microbiome and iron status are known to play a role in the pathophysiology of nonalcoholic fatty liver disease (NAFLD), although their complex interaction remains unclear. Results: Here, we applied an integrative systems medicine approa ...
The first examples of (arene)Os(II) curcuminoid derivatives have been prepared and characterized. The neutral complexes [(p-cym)Os(curc)Cl] (1) and [( p-cym)Os(bdcurc)Cl] ( 2), together with the cationic derivatives [( p-cym)Os(curc)(PTA)][SO3CF3] (3) and ...