Limit of a sequenceAs the positive integer becomes larger and larger, the value becomes arbitrarily close to . We say that "the limit of the sequence equals ." In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). If such a limit exists, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests.
Nicolas BourbakiNicolas Bourbaki (nikɔla buʁbaki) is the collective pseudonym of a group of mathematicians, predominantly French alumni of the École normale supérieure (ENS). Founded in 1934–1935, the Bourbaki group originally intended to prepare a new textbook in analysis. Over time the project became much more ambitious, growing into a large series of textbooks published under the Bourbaki name, meant to treat modern pure mathematics. The series is known collectively as the Éléments de mathématique (Elements of Mathematics), the group's central work.
Boundary (topology)In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points in the closure of S not belonging to the interior of S. An element of the boundary of S is called a boundary point of S. The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set S include and . Some authors (for example Willard, in General Topology) use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds.
Hausdorff spaceIn topology and related branches of mathematics, a Hausdorff space (ˈhaʊsdɔːrf , ˈhaʊzdɔːrf ), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology.
Felix HausdorffFelix Hausdorff (ˈhaʊsdɔːrf , ˈhaʊzdɔːrf ; November 8, 1868 – January 26, 1942) was a German mathematician, pseudonym Paul Mongré, who is considered to be one of the founders of modern topology and who contributed significantly to set theory, descriptive set theory, measure theory, and functional analysis. Life became difficult for Hausdorff and his family after Kristallnacht in 1938. The next year he initiated efforts to emigrate to the United States, but was unable to make arrangements to receive a research fellowship.
Zero of a functionIn mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function , is a member of the domain of such that vanishes at ; that is, the function attains the value of 0 at , or equivalently, is the solution to the equation . A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function.
Separated setsIn topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets are separated or not is important both to the notion of connected spaces (and their connected components) as well as to the separation axioms for topological spaces. Separated sets should not be confused with separated spaces (defined below), which are somewhat related but different.