Summary
Neural machine translation (NMT) is an approach to machine translation that uses an artificial neural network to predict the likelihood of a sequence of words, typically modeling entire sentences in a single integrated model. They require only a fraction of the memory needed by traditional statistical machine translation (SMT) models. Furthermore, unlike conventional translation systems, all parts of the neural translation model are trained jointly (end-to-end) to maximize the translation performance. Deep learning applications appeared first in speech recognition in the 1990s. The first scientific paper on using neural networks in machine translation appeared in 2014, when Bahdanau et al. and Sutskever et al. proposed end-to-end neural network translation models and formally used the term "neural machine translation". The first large-scale NMT system was launched by Baidu in 2015. The following year Google also launched an NMT system, as did others. It was followed by a lot of advances in the following few years. (Large-vocabulary NMT, application to Image captioning, Subword-NMT, Multilingual NMT, Multi-Source NMT, Character-dec NMT, Zero-Resource NMT, Google, Fully Character-NMT, Zero-Shot NMT in 2017). In 2015 there was the first appearance of a NMT system in a public machine translation competition (OpenMT'15). WMT'15 also for the first time had a NMT contender; the following year it already had 90% of NMT systems among its winners. Since 2017, neural machine translation has been used by the European Patent Office to make information from the global patent system instantly accessible. The system, developed in collaboration with Google, is paired with 31 languages, and as of 2018, the system has translated over nine million documents. NMT departs from phrase-based statistical approaches that use separately engineered subcomponents. Neural machine translation (NMT) is not a drastic step beyond what has been traditionally done in statistical machine translation (SMT).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.