Stationary stateA stationary state is a quantum state with all observables independent of time. It is an eigenvector of the energy operator (instead of a quantum superposition of different energies). It is also called energy eigenvector, energy eigenstate, energy eigenfunction, or energy eigenket. It is very similar to the concept of atomic orbital and molecular orbital in chemistry, with some slight differences explained below. A stationary state is called stationary because the system remains in the same state as time elapses, in every observable way.
Identical particlesIn quantum mechanics, identical particles (also called indistinguishable or indiscernible particles) are particles that cannot be distinguished from one another, even in principle. Species of identical particles include, but are not limited to, elementary particles (such as electrons), composite subatomic particles (such as atomic nuclei), as well as atoms and molecules. Quasiparticles also behave in this way.
Pauli exclusion principleIn quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later extended to all fermions with his spin–statistics theorem of 1940.
Wave functionIn quantum physics, a wave function (or wavefunction), represented by the Greek letter Ψ, is a mathematical description of the quantum state of an isolated quantum system. In the Copenhagen interpretation of quantum mechanics, the wave function is a complex-valued probability amplitude; the probabilities for the possible results of the measurements made on a measured system can be derived from the wave function. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively).
Quantum entanglementQuantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.
Atomic orbitalIn atomic theory and quantum mechanics, an atomic orbital (ˈɔːrbɪtəl) is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in any specific region around the atom's nucleus. The term atomic orbital may also refer to the physical region or space where the electron can be calculated to be present, as predicted by the particular mathematical form of the orbital.