Related concepts (38)
Cryptanalysis
Cryptanalysis (from the Greek kryptós, "hidden", and analýein, "to analyze") refers to the process of analyzing information systems in order to understand hidden aspects of the systems. Cryptanalysis is used to breach cryptographic security systems and gain access to the contents of encrypted messages, even if the cryptographic key is unknown. In addition to mathematical analysis of cryptographic algorithms, cryptanalysis includes the study of side-channel attacks that do not target weaknesses in the cryptographic algorithms themselves, but instead exploit weaknesses in their implementation.
Steganography
Steganography (ˌstɛɡəˈnɒɡrəfi ) is the practice of representing information within another message or physical object, in such a manner that the presence of the information is not evident to human inspection. In computing/electronic contexts, a , message, image, or video is concealed within another file, message, image, or video. The word steganography comes from Greek steganographia, which combines the words steganós (), meaning "covered or concealed", and -graphia () meaning "writing".
Classical cipher
In cryptography, a classical cipher is a type of cipher that was used historically but for the most part, has fallen into disuse. In contrast to modern cryptographic algorithms, most classical ciphers can be practically computed and solved by hand. However, they are also usually very simple to break with modern technology. The term includes the simple systems used since Greek and Roman times, the elaborate Renaissance ciphers, World War II cryptography such as the Enigma machine and beyond.
Polyalphabetic cipher
A polyalphabetic cipher is a substitution, using multiple substitution alphabets. The Vigenère cipher is probably the best-known example of a polyalphabetic cipher, though it is a simplified special case. The Enigma machine is more complex but is still fundamentally a polyalphabetic substitution cipher. The work of Al-Qalqashandi (1355–1418), based on the earlier work of Ibn al-Durayhim (1312–1359), contained the first published discussion of the substitution and transposition of ciphers, as well as the first description of a polyalphabetic cipher, in which each plaintext letter is assigned more than one substitute.
S-box
In cryptography, an S-box (substitution-box) is a basic component of symmetric key algorithms which performs substitution. In block ciphers, they are typically used to obscure the relationship between the key and the ciphertext, thus ensuring Shannon's property of confusion. Mathematically, an S-box is a nonlinear vectorial Boolean function. In general, an S-box takes some number of input bits, m, and transforms them into some number of output bits, n, where n is not necessarily equal to m.
Playfair cipher
The Playfair cipher or Playfair square or Wheatstone–Playfair cipher is a manual symmetric encryption technique and was the first literal digram substitution cipher. The scheme was invented in 1854 by Charles Wheatstone, but bears the name of Lord Playfair for promoting its use. The technique encrypts pairs of letters (bigrams or digrams), instead of single letters as in the simple substitution cipher and rather more complex Vigenère cipher systems then in use.
Fish (cryptography)
Fish (sometimes FISH) was the UK's GC&CS Bletchley Park codename for any of several German teleprinter stream ciphers used during World War II. Enciphered teleprinter traffic was used between German High Command and Army Group commanders in the field, so its intelligence value (Ultra) was of the highest strategic value to the Allies. This traffic normally passed over landlines, but as German forces extended their geographic reach beyond western Europe, they had to resort to wireless transmission.
Substitution–permutation network
In cryptography, an SP-network, or substitution–permutation network (SPN), is a series of linked mathematical operations used in block cipher algorithms such as AES (Rijndael), 3-Way, Kalyna, Kuznyechik, PRESENT, SAFER, SHARK, and Square. Such a network takes a block of the plaintext and the key as inputs, and applies several alternating rounds or layers of substitution boxes (S-boxes) and permutation boxes (P-boxes) to produce the ciphertext block. The S-boxes and P-boxes transform of input bits into output bits.
Book cipher
A book cipher is a cipher in which each word or letter in the plaintext of a message is replaced by some code that locates it in another text, the key. A simple version of such a cipher would use a specific book as the key, and would replace each word of the plaintext by a number that gives the position where that word occurs in that book. For example, if the chosen key is H. G. Wells's novel The War of the Worlds, the plaintext "all plans failed, coming back tomorrow" could be encoded as "335 219 881, 5600 853 9315" — since the 335th word of the novel is "all", the 219th is "plans", etc.
Running key cipher
In classical cryptography, the running key cipher is a type of polyalphabetic substitution cipher in which a text, typically from a book, is used to provide a very long keystream. Usually, the book to be used would be agreed ahead of time, while the passage to be used would be chosen randomly for each message and secretly indicated somewhere in the message. The text used is The C Programming Language (1978 edition), and the tabula recta is the tableau. The plaintext is "Flee at once".

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.