Processor registerA processor register is a quickly accessible location available to a computer's processor. Registers usually consist of a small amount of fast storage, although some registers have specific hardware functions, and may be read-only or write-only. In computer architecture, registers are typically addressed by mechanisms other than main memory, but may in some cases be assigned a memory address e.g. DEC PDP-10, ICT 1900.
Optimizing compilerIn computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption (the last three being popular for portable computers). Compiler optimization is generally implemented using a sequence of optimizing transformations, algorithms which take a program and transform it to produce a semantically equivalent output program that uses fewer resources or executes faster.
Control-flow graphIn computer science, a control-flow graph (CFG) is a representation, using graph notation, of all paths that might be traversed through a program during its execution. The control-flow graph was discovered by Frances E. Allen, who noted that Reese T. Prosser used boolean connectivity matrices for flow analysis before. The CFG is essential to many compiler optimizations and static-analysis tools. In a control-flow graph each node in the graph represents a basic block, i.e.
Intermediate representationAn intermediate representation (IR) is the data structure or code used internally by a compiler or virtual machine to represent source code. An IR is designed to be conducive to further processing, such as optimization and translation. A "good" IR must be accurate – capable of representing the source code without loss of information – and independent of any particular source or target language. An IR may take one of several forms: an in-memory data structure, or a special tuple- or stack-based code readable by the program.
Memory hierarchyIn computer organisation, the memory hierarchy separates computer storage into a hierarchy based on response time. Since response time, complexity, and capacity are related, the levels may also be distinguished by their performance and controlling technologies. Memory hierarchy affects performance in computer architectural design, algorithm predictions, and lower level programming constructs involving locality of reference. Designing for high performance requires considering the restrictions of the memory hierarchy, i.
Inline expansionIn computing, inline expansion, or inlining, is a manual or compiler optimization that replaces a function call site with the body of the called function. Inline expansion is similar to macro expansion, but occurs during compilation, without changing the source code (the text), while macro expansion occurs prior to compilation, and results in different text that is then processed by the compiler. Inlining is an important optimization, but has complicated effects on performance.
Instruction schedulingIn computer science, instruction scheduling is a compiler optimization used to improve instruction-level parallelism, which improves performance on machines with instruction pipelines. Put more simply, it tries to do the following without changing the meaning of the code: Avoid pipeline stalls by rearranging the order of instructions. Avoid illegal or semantically ambiguous operations (typically involving subtle instruction pipeline timing issues or non-interlocked resources).
Use-define chainWithin computer science, a Use-Definition Chain (UD Chain) is a data structure that consists of a use, U, of a variable, and all the definitions, D, of that variable that can reach that use without any other intervening definitions. A UD Chain generally means the assignment of some value to a variable. A counterpart of a UD Chain is a Definition-Use Chain (DU Chain), which consists of a definition, D, of a variable and all the uses, U, reachable from that definition without any other intervening definitions.
Call stackIn computer science, a call stack is a stack data structure that stores information about the active subroutines of a computer program. This kind of stack is also known as an execution stack, program stack, control stack, run-time stack, or machine stack, and is often shortened to just "the stack". Although maintenance of the call stack is important for the proper functioning of most software, the details are normally hidden and automatic in high-level programming languages.
Runtime (program lifecycle phase)In computer science, runtime, run time, or execution time is the final phase of a computer programs life cycle, in which the code is being executed on the computer's central processing unit (CPU) as machine code. In other words, "runtime" is the running phase of a program. A runtime error is detected after or during the execution (running state) of a program, whereas a compile-time error is detected by the compiler before the program is ever executed.