Chebyshev polynomialsThe Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as and . They can be defined in several equivalent ways, one of which starts with trigonometric functions: The Chebyshev polynomials of the first kind are defined by Similarly, the Chebyshev polynomials of the second kind are defined by That these expressions define polynomials in may not be obvious at first sight, but follows by rewriting and using de Moivre's formula or by using the angle sum formulas for and repeatedly.
Gegenbauer polynomialsIn mathematics, Gegenbauer polynomials or ultraspherical polynomials C(x) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x2)α–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer. File:Plot of the Gegenbauer polynomial C n^(m)(x) with n=10 and m=1 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.
Hypergeometric functionIn mathematics, the Gaussian or ordinary hypergeometric function 2F1(a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation. For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by and .
Jacobi polynomialsIn mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight on the interval . The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials. The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi. The Jacobi polynomials are defined via the hypergeometric function as follows: where is Pochhammer's symbol (for the rising factorial).
Legendre polynomialsIn mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a vast number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications. Closely related to the Legendre polynomials are associated Legendre polynomials, Legendre functions, Legendre functions of the second kind, and associated Legendre functions.