Quantum suicide is a thought experiment in quantum mechanics and the philosophy of physics. Purportedly, it can falsify any interpretation of quantum mechanics other than the Everett many-worlds interpretation by means of a variation of the Schrödinger's cat thought experiment, from the cat's point of view. Quantum immortality refers to the subjective experience of surviving quantum suicide. This concept is sometimes conjectured to be applicable to real-world causes of death as well.
As a thought experiment, quantum suicide is an intellectual exercise in which an abstract setup is followed through to its logical consequences merely to prove a theoretical point. Virtually all physicists and philosophers of science who have described it, especially in popularized treatments, underscore that it relies on contrived, idealized circumstances that may be impossible or exceedingly difficult to realize in real life, and that its theoretical premises are controversial even among supporters of the many-worlds interpretation. Thus, as cosmologist Anthony Aguirre warns, "[...] it would be foolish (and selfish) in the extreme to let this possibility guide one's actions in any life-and-death question."
Hugh Everett did not mention quantum suicide or quantum immortality in writing; his work was intended as a solution to the paradoxes of quantum mechanics. Eugene Shikhovtsev's biography of Everett states that "Everett firmly believed that his many-worlds theory guaranteed him immortality: his consciousness, he argued, is bound at each branching to follow whatever path does not lead to death". Peter Byrne, author of a biography of Everett, reports that Everett also privately discussed quantum suicide (such as to play high-stakes Russian roulette and survive in the winning branch), but adds that "[i]t is unlikely, however, that Everett subscribed to this [quantum immortality] view, as the only sure thing it guarantees is that the majority of your copies will die, hardly a rational goal."
Among scientists, the thought experiment was introduced by Euan Squires in 1986.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
A thought experiment is a hypothetical situation in which a hypothesis, theory, or principle is laid out for the purpose of thinking through its consequences. The ancient Greek deiknymi, "was the most ancient pattern of mathematical proof", and existed before Euclidean mathematics, where the emphasis was on the conceptual, rather than on the experimental part of a thought-experiment. Johann Witt-Hansen established that Hans Christian Ørsted was the first to use the term Gedankenexperiment (from German: 'thought experiment') circa 1812.
Since the advent of internet and mass communication, two public-key cryptographic algorithms have shared the monopoly of data encryption and authentication: Diffie-Hellman and RSA. However, in the last few years, progress made in quantum physics -- and mor ...
Zero knowledge plays a central role in cryptography and complexity. The seminal work of Ben-Or et al. (STOC 1988) shows that zero knowledge can be achieved unconditionally for any language in NEXP, as long as one is willing to make a suitable physical assu ...
Interactive oracle proofs (IOPs) are a multi-round generalization of probabilistically checkable proofs that play a fundamental role in the construction of efficient cryptographic proofs. We present an IOP that simultaneously achieves the properties of zer ...